2022-11-02 20:23:09 -06:00
model :
2022-11-16 11:52:06 -07:00
base_learning_rate : 1.2e-6
2022-11-02 20:23:09 -06:00
target : ldm.models.diffusion.ddpm.LatentDiffusion
params :
linear_start : 0.00085
linear_end : 0.0120
num_timesteps_cond : 1
log_every_t : 200
timesteps : 1000
first_stage_key : image
cond_stage_key : caption
image_size : 64
channels : 4
cond_stage_trainable: true # Note : different from the one we trained before
conditioning_key : crossattn
monitor : val/loss_simple_ema
scale_factor : 0.18215
use_ema : False
unfreeze_model : True
2022-11-16 11:52:06 -07:00
model_lr : 1.1e-6
#use_scheduler: True
2022-11-02 20:23:09 -06:00
scheduler_config :
2022-11-16 11:52:06 -07:00
target : ldm.lr_scheduler.EveryDreamScheduler
2022-11-02 20:23:09 -06:00
params :
2022-11-16 11:52:06 -07:00
f_start : 5.0e-1 # starting LR multiplier
warm_up_steps : 50 # number of steps to warm up to f_start before decaying LR
f_max : 1.0 # maximum LR multiplier
f_min : 5.0e-1 # minimum LR multiplier
steps_to_min : 10000 # number of steps to decay from f_max to f_min
verbosity_interval : 200 # how often to print LR multiplier (steps)
2022-11-02 20:23:09 -06:00
unet_config :
target : ldm.modules.diffusionmodules.openaimodel.UNetModel
params :
image_size : 32 # unused
in_channels : 4
out_channels : 4
model_channels : 320
attention_resolutions : [ 4 , 2 , 1 ]
num_res_blocks : 2
channel_mult : [ 1 , 2 , 4 , 4 ]
num_heads : 8
use_spatial_transformer : True
transformer_depth : 1
context_dim : 768
use_checkpoint : True
legacy : False
first_stage_config :
target : ldm.models.autoencoder.AutoencoderKL
params :
embed_dim : 4
monitor : val/rec_loss
ddconfig :
double_z : true
z_channels : 4
2022-11-06 17:59:37 -07:00
resolution : 512
2022-11-02 20:23:09 -06:00
in_channels : 3
out_ch : 3
ch : 128
ch_mult :
- 1
- 2
- 4
- 4
num_res_blocks : 2
attn_resolutions : [ ]
dropout : 0.0
lossconfig :
target : torch.nn.Identity
cond_stage_config :
target : ldm.modules.encoders.modules.FrozenCLIPEmbedder
data :
target : main.DataModuleFromConfig
params :
2022-11-16 11:52:06 -07:00
batch_size : 6
2022-11-06 17:59:37 -07:00
num_workers : 12
2022-11-02 20:23:09 -06:00
wrap : falsegit
train :
target : ldm.data.every_dream.EveryDreamBatch
params :
2022-11-16 11:52:06 -07:00
repeats: 1 # rough suggestions : 5 with 5000+ images, 15 for 1000 images, use micro yaml for <100
debug_level : 1 # 1 to print if images are dropped due to multiple-aspect ratio image batching
conditional_dropout : 0.08 # experimental, likelihood to drop the caption, may help with poorly captioned images
crop_jitter : 20 # adds N pixels of jitter to cropping algorithm for non-square images only
resolution : 512 # defines max pixels for all aspects, 512, 576, 640, 704, or 768
seed : 555 # seed used to shuffle the dataset, keep constant for reproducibility
2022-11-02 20:23:09 -06:00
validation :
target : ldm.data.ed_validate.EDValidateBatch
params :
2022-11-16 11:52:06 -07:00
repeats : 0.25
2022-11-02 20:23:09 -06:00
test :
target : ldm.data.ed_validate.EDValidateBatch
params :
2022-11-06 17:59:37 -07:00
repeats : 0.1
2022-11-02 20:23:09 -06:00
lightning :
modelcheckpoint :
params :
every_n_epochs : 1
2022-11-16 11:52:06 -07:00
#every_n_train_steps: 1500 # can only use every_n_epochs OR every_n_train_steps, suggest you stick with epochs
2022-11-02 20:27:28 -06:00
save_last : True
2022-11-16 11:52:06 -07:00
save_top_k : 99
2022-11-02 20:23:09 -06:00
filename : "{epoch:02d}-{step:05d}"
callbacks :
image_logger :
target : main.ImageLogger
params :
2022-11-16 11:52:06 -07:00
batch_frequency : 400
2022-11-02 20:23:09 -06:00
max_images : 16
increase_log_steps : False
trainer :
2022-11-03 17:47:54 -06:00
benchmark : True
2022-11-16 11:52:06 -07:00
max_epochs : 5
2022-11-02 20:23:09 -06:00
max_steps : 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want...
check_val_every_n_epoch : 1
2022-11-05 09:41:48 -06:00
gpus : 0 ,