2022-09-06 01:00:21 -06:00
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import PIL
|
|
|
|
from PIL import Image
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
from torchvision import transforms
|
2022-09-30 18:53:24 -06:00
|
|
|
from pathlib import Path
|
2022-09-26 19:06:04 -06:00
|
|
|
|
2022-09-06 01:00:21 -06:00
|
|
|
class PersonalizedBase(Dataset):
|
|
|
|
def __init__(self,
|
|
|
|
data_root,
|
|
|
|
size=None,
|
|
|
|
repeats=100,
|
|
|
|
interpolation="bicubic",
|
2022-09-28 15:18:09 -06:00
|
|
|
flip_p=0.0,
|
2022-09-06 01:00:21 -06:00
|
|
|
set="train",
|
|
|
|
center_crop=False,
|
2022-09-26 19:06:04 -06:00
|
|
|
reg=False
|
2022-09-06 01:00:21 -06:00
|
|
|
):
|
|
|
|
|
|
|
|
self.data_root = data_root
|
|
|
|
|
2022-09-30 21:56:27 -06:00
|
|
|
self.image_paths = []
|
|
|
|
|
|
|
|
classes = os.listdir(self.data_root)
|
|
|
|
|
|
|
|
for cl in classes:
|
|
|
|
class_path = os.path.join(self.data_root, cl)
|
|
|
|
for file_path in os.listdir(class_path):
|
|
|
|
image_path = os.path.join(class_path, file_path)
|
|
|
|
self.image_paths.append(image_path)
|
2022-09-06 01:00:21 -06:00
|
|
|
|
|
|
|
# self._length = len(self.image_paths)
|
|
|
|
self.num_images = len(self.image_paths)
|
2022-09-26 19:06:04 -06:00
|
|
|
self._length = self.num_images
|
2022-09-06 01:00:21 -06:00
|
|
|
|
|
|
|
self.center_crop = center_crop
|
|
|
|
|
|
|
|
if set == "train":
|
|
|
|
self._length = self.num_images * repeats
|
|
|
|
|
|
|
|
self.size = size
|
|
|
|
self.interpolation = {"linear": PIL.Image.LINEAR,
|
|
|
|
"bilinear": PIL.Image.BILINEAR,
|
|
|
|
"bicubic": PIL.Image.BICUBIC,
|
|
|
|
"lanczos": PIL.Image.LANCZOS,
|
|
|
|
}[interpolation]
|
|
|
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
|
|
|
self.reg = reg
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self._length
|
|
|
|
|
|
|
|
def __getitem__(self, i):
|
|
|
|
example = {}
|
2022-09-30 21:56:27 -06:00
|
|
|
|
2022-09-06 01:00:21 -06:00
|
|
|
image = Image.open(self.image_paths[i % self.num_images])
|
|
|
|
|
|
|
|
if not image.mode == "RGB":
|
|
|
|
image = image.convert("RGB")
|
|
|
|
|
2022-09-30 18:53:24 -06:00
|
|
|
pathname = Path(self.image_paths[i % self.num_images]).name
|
2022-09-06 01:00:21 -06:00
|
|
|
|
2022-09-30 18:53:24 -06:00
|
|
|
parts = pathname.split("_")
|
2022-09-30 21:56:27 -06:00
|
|
|
identifier = parts[0]
|
2022-09-26 19:06:04 -06:00
|
|
|
|
2022-09-30 21:56:27 -06:00
|
|
|
example["caption"] = identifier
|
2022-09-06 01:00:21 -06:00
|
|
|
|
|
|
|
# default to score-sde preprocessing
|
|
|
|
img = np.array(image).astype(np.uint8)
|
2022-09-26 19:06:04 -06:00
|
|
|
|
2022-09-06 01:00:21 -06:00
|
|
|
if self.center_crop:
|
|
|
|
crop = min(img.shape[0], img.shape[1])
|
|
|
|
h, w, = img.shape[0], img.shape[1]
|
|
|
|
img = img[(h - crop) // 2:(h + crop) // 2,
|
2022-09-26 19:06:04 -06:00
|
|
|
(w - crop) // 2:(w + crop) // 2]
|
2022-09-06 01:00:21 -06:00
|
|
|
|
|
|
|
image = Image.fromarray(img)
|
|
|
|
if self.size is not None:
|
2022-09-26 19:06:04 -06:00
|
|
|
image = image.resize((self.size, self.size),
|
|
|
|
resample=self.interpolation)
|
2022-09-06 01:00:21 -06:00
|
|
|
|
|
|
|
image = self.flip(image)
|
|
|
|
image = np.array(image).astype(np.uint8)
|
|
|
|
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
2022-09-26 19:06:04 -06:00
|
|
|
return example
|