2022-11-07 20:31:50 -07:00
model :
base_learning_rate : 1.0e-6
target : ldm.models.diffusion.ddpm.LatentDiffusion
params :
linear_start : 0.00085
linear_end : 0.0120
num_timesteps_cond : 1
log_every_t : 200
timesteps : 1000
first_stage_key : image
cond_stage_key : caption
image_size : 64
channels : 4
cond_stage_trainable: true # Note : different from the one we trained before
conditioning_key : crossattn
monitor : val/loss_simple_ema
scale_factor : 0.18215
use_ema : False
unfreeze_model : True
model_lr : 1.0e-6
unet_config :
target : ldm.modules.diffusionmodules.openaimodel.UNetModel
params :
image_size : 32 # unused
in_channels : 4
out_channels : 4
model_channels : 320
attention_resolutions : [ 4 , 2 , 1 ]
num_res_blocks : 2
channel_mult : [ 1 , 2 , 4 , 4 ]
num_heads : 8
use_spatial_transformer : True
transformer_depth : 1
context_dim : 768
use_checkpoint : True
legacy : False
first_stage_config :
target : ldm.models.autoencoder.AutoencoderKL
params :
embed_dim : 4
monitor : val/rec_loss
ddconfig :
double_z : true
z_channels : 4
resolution : 512
in_channels : 3
out_ch : 3
ch : 128
ch_mult :
- 1
- 2
- 4
- 4
num_res_blocks : 2
attn_resolutions : [ ]
dropout : 0.0
lossconfig :
target : torch.nn.Identity
cond_stage_config :
target : ldm.modules.encoders.modules.FrozenCLIPEmbedder
data :
target : main.DataModuleFromConfig
params :
2022-11-10 18:34:07 -07:00
batch_size : 4
2022-11-10 17:57:59 -07:00
num_workers : 8
2022-11-07 20:31:50 -07:00
wrap : falsegit
train :
target : ldm.data.every_dream.EveryDreamBatch
params :
repeats : 50 # Adjust how much trainging to do. Fewer training images need more repeats. This is multiplied by max_epochs for "amount" of training.
flip_p : 0 # use 0.5 to randomly flip images each repeat, not recommended unless very low training data (<20 images)
debug_level : 1 # 1 to print if images are dropped due to multiple-aspect ratio image bucketing
validation :
target : ldm.data.ed_validate.EDValidateBatch
params :
repeats : 10
test :
target : ldm.data.ed_validate.EDValidateBatch
params :
repeats : 1
lightning :
modelcheckpoint :
params :
every_n_epochs : 1 # produce a ckpt every epoch, leave 1!
#every_n_train_steps: 1400 # can only use epoch or train step checkpoints, can use this if you want instead of every_n_epochs but suggest epochs
2022-11-10 17:57:59 -07:00
save_top_k : 3 # *** How many checkpoints you will get to try out, automatically keeps what it thinks are the best. ** REQUIRES ~15GB+ of VOLUME store per checkpoint!!! ***
2022-11-07 20:31:50 -07:00
# Above is important. It costs a lot of VOLUME store but keeps you from having to start over if you overtrain by giving you a few checkpoints to try out.
save_last : False
filename : "{epoch:02d}-{step:05d}"
callbacks :
image_logger :
target : main.ImageLogger
params :
2022-11-10 17:44:57 -07:00
batch_frequency : 250
2022-11-07 20:31:50 -07:00
max_images : 16
increase_log_steps : False
trainer :
benchmark : True
2022-11-18 21:54:27 -07:00
max_epochs : 4 # suggest 3-4+ and adjust repeats above, only "save_top_k" number (above) of epochs are kept, be mindful of volume store use
2022-11-07 20:31:50 -07:00
max_steps : 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want...
check_val_every_n_epoch : 1
gpus : 0 ,