2022-11-05 23:25:03 -06:00
|
|
|
|
2022-11-06 17:59:37 -07:00
|
|
|
import PIL
|
2022-11-05 23:25:03 -06:00
|
|
|
import numpy as np
|
|
|
|
from torchvision import transforms
|
2022-11-08 21:00:54 -07:00
|
|
|
import random
|
|
|
|
import math
|
2022-11-10 16:29:31 -07:00
|
|
|
import os
|
2022-11-05 23:25:03 -06:00
|
|
|
|
2022-11-10 16:29:31 -07:00
|
|
|
class ImageTrainItem():
|
|
|
|
"""
|
|
|
|
# [image, identifier, target_aspect, closest_aspect_wh(w,h), pathname]
|
|
|
|
"""
|
2022-11-06 17:59:37 -07:00
|
|
|
def __init__(self, image: PIL.Image, caption: str, target_wh: list, pathname: str, flip_p=0.0):
|
2022-11-05 23:25:03 -06:00
|
|
|
self.caption = caption
|
|
|
|
self.target_wh = target_wh
|
|
|
|
self.pathname = pathname
|
|
|
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
2022-11-08 21:00:54 -07:00
|
|
|
self.cropped_img = None
|
2022-11-05 23:25:03 -06:00
|
|
|
|
|
|
|
if image is None:
|
2022-11-06 17:59:37 -07:00
|
|
|
self.image = PIL.Image.new(mode='RGB',size=(1,1))
|
2022-11-05 23:25:03 -06:00
|
|
|
else:
|
|
|
|
self.image = image
|
|
|
|
|
2022-11-10 16:29:31 -07:00
|
|
|
def hydrate(self, crop=False, save=False):
|
2022-11-06 17:59:37 -07:00
|
|
|
if type(self.image) is not np.ndarray:
|
|
|
|
self.image = PIL.Image.open(self.pathname).convert('RGB')
|
2022-11-05 23:25:03 -06:00
|
|
|
|
2022-11-10 16:29:31 -07:00
|
|
|
if crop:
|
|
|
|
cropped_img = self.__autocrop(self.image)
|
|
|
|
self.image = cropped_img.resize((512,512), resample=PIL.Image.BICUBIC)
|
|
|
|
else:
|
|
|
|
width, height = self.image.size
|
|
|
|
image_aspect = width / height
|
|
|
|
target_aspect = self.target_wh[0] / self.target_wh[1]
|
|
|
|
if image_aspect > target_aspect:
|
|
|
|
new_width = int(height * target_aspect)
|
|
|
|
left = int((width - new_width) / 2)
|
|
|
|
right = left + new_width
|
|
|
|
self.image = self.image.crop((left, 0, right, height))
|
|
|
|
else:
|
|
|
|
new_height = int(width / target_aspect)
|
|
|
|
top = int((height - new_height) / 2)
|
|
|
|
bottom = top + new_height
|
|
|
|
self.image = self.image.crop((0, top, width, bottom))
|
|
|
|
self.image = self.image.resize(self.target_wh, resample=PIL.Image.BICUBIC)
|
2022-11-06 17:59:37 -07:00
|
|
|
|
|
|
|
self.image = self.flip(self.image)
|
2022-11-10 16:29:31 -07:00
|
|
|
|
|
|
|
if save: # for manual inspection
|
|
|
|
base_name = os.path.basename(self.pathname)
|
|
|
|
self.image.save(f"test/output/{base_name}")
|
2022-11-08 21:00:54 -07:00
|
|
|
|
2022-11-06 17:59:37 -07:00
|
|
|
self.image = np.array(self.image).astype(np.uint8)
|
2022-11-05 23:25:03 -06:00
|
|
|
|
|
|
|
self.image = (self.image / 127.5 - 1.0).astype(np.float32)
|
|
|
|
|
2022-11-08 21:00:54 -07:00
|
|
|
return self
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def __autocrop(image: PIL.Image, q=.404):
|
2022-11-10 16:29:31 -07:00
|
|
|
"""
|
|
|
|
crops image to a random square inside small axis using a truncated gaussian distribution across the long axis
|
|
|
|
"""
|
2022-11-08 21:00:54 -07:00
|
|
|
x, y = image.size
|
|
|
|
|
|
|
|
if x != y:
|
|
|
|
if (x>y):
|
|
|
|
rand_x = x-y
|
|
|
|
sigma = max(rand_x*q,1)
|
|
|
|
else:
|
|
|
|
rand_y = y-x
|
|
|
|
sigma = max(rand_y*q,1)
|
|
|
|
|
|
|
|
if (x>y):
|
|
|
|
x_crop_gauss = abs(random.gauss(0, sigma))
|
|
|
|
x_crop = min(x_crop_gauss,(x-y)/2)
|
|
|
|
x_crop = math.trunc(x_crop)
|
|
|
|
y_crop = 0
|
|
|
|
else:
|
|
|
|
y_crop_gauss = abs(random.gauss(0, sigma))
|
|
|
|
x_crop = 0
|
|
|
|
y_crop = min(y_crop_gauss,(y-x)/2)
|
|
|
|
y_crop = math.trunc(y_crop)
|
|
|
|
|
|
|
|
min_xy = min(x, y)
|
|
|
|
image = image.crop((x_crop, y_crop, x_crop + min_xy, y_crop + min_xy))
|
|
|
|
|
|
|
|
return image
|