EveryDream-trainer/ldm/data/ed_validate.py

61 lines
1.9 KiB
Python
Raw Normal View History

2022-09-06 01:00:21 -06:00
import numpy as np
from torch.utils.data import Dataset
from torchvision import transforms
2022-11-03 17:47:54 -06:00
from ldm.data.data_loader import DataLoaderMultiAspect as dlma
2022-11-02 20:23:09 -06:00
import math
import ldm.data.dl_singleton as dls
2022-11-02 20:23:09 -06:00
class EDValidateBatch(Dataset):
2022-09-06 01:00:21 -06:00
def __init__(self,
data_root,
2022-09-28 15:18:09 -06:00
flip_p=0.0,
2022-11-02 20:23:09 -06:00
repeats=1,
2022-11-05 09:41:48 -06:00
debug_level=0,
batch_size=1,
set='val',
2022-09-06 01:00:21 -06:00
):
2022-09-06 01:00:21 -06:00
self.data_root = data_root
2022-11-05 09:41:48 -06:00
self.batch_size = batch_size
if not dls.shared_dataloader:
print("Creating new dataloader singleton")
dls.shared_dataloader = dlma(data_root=data_root, debug_level=debug_level, batch_size=self.batch_size)
self.image_caption_pairs = dls.shared_dataloader.get_all_images()
2022-11-02 20:23:09 -06:00
2022-11-03 17:47:54 -06:00
self.num_images = len(self.image_caption_pairs)
2022-09-06 01:00:21 -06:00
self._length = max(math.trunc(self.num_images * repeats), batch_size) - self.num_images % self.batch_size
print()
print(f" ** Validation Set: {set}, num_images: {self.num_images}, length: {self._length}, repeats: {repeats}, batch_size: {self.batch_size}, ")
print(f" ** Validation steps: {self._length / batch_size:.0f}")
print()
2022-09-06 01:00:21 -06:00
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
2022-11-03 17:47:54 -06:00
idx = i % len(self.image_caption_pairs)
example = self.get_image(self.image_caption_pairs[idx])
return example
def get_image(self, image_caption_pair):
2022-09-06 01:00:21 -06:00
example = {}
2022-11-03 17:47:54 -06:00
image = image_caption_pair[0]
2022-09-06 01:00:21 -06:00
if not image.mode == "RGB":
image = image.convert("RGB")
2022-11-03 17:47:54 -06:00
identifier = image_caption_pair[1]
2022-09-06 01:00:21 -06:00
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
2022-11-02 20:23:09 -06:00
example["caption"] = identifier
return example