EveryDream-trainer/ldm/data/personalized.py

122 lines
3.6 KiB
Python
Raw Normal View History

2022-09-06 01:00:21 -06:00
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
training_templates_smallest = [
'joepenna {}',
2022-09-06 01:00:21 -06:00
]
reg_templates_smallest = [
'{}',
2022-09-06 01:00:21 -06:00
]
imagenet_templates_small = [
'{}',
2022-09-06 01:00:21 -06:00
]
imagenet_dual_templates_small = [
'{} with {}'
2022-09-06 01:00:21 -06:00
]
per_img_token_list = [
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
]
2022-09-06 01:00:21 -06:00
class PersonalizedBase(Dataset):
def __init__(self,
data_root,
size=None,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="dog",
per_image_tokens=False,
center_crop=False,
mixing_prob=0.25,
coarse_class_text=None,
reg=False
2022-09-06 01:00:21 -06:00
):
self.data_root = data_root
self.image_paths = [os.path.join(
self.data_root, file_path) for file_path in os.listdir(self.data_root)]
2022-09-06 01:00:21 -06:00
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
2022-09-06 01:00:21 -06:00
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
self.mixing_prob = mixing_prob
self.coarse_class_text = coarse_class_text
if per_image_tokens:
assert self.num_images < len(
per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
2022-09-06 01:00:21 -06:00
if set == "train":
self._length = self.num_images * repeats
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.reg = reg
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
if self.coarse_class_text:
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
if not self.reg:
text = random.choice(training_templates_smallest).format(
placeholder_string)
2022-09-06 01:00:21 -06:00
else:
text = random.choice(reg_templates_smallest).format(
placeholder_string)
2022-09-06 01:00:21 -06:00
example["caption"] = text
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
2022-09-06 01:00:21 -06:00
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
2022-09-06 01:00:21 -06:00
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size),
resample=self.interpolation)
2022-09-06 01:00:21 -06:00
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example