Merge pull request #2 from choe220/main
changed 'demoura' to 'joepenna' to match the notebook
This commit is contained in:
commit
b441e1fc20
|
@ -8,7 +8,7 @@ from torchvision import transforms
|
|||
import random
|
||||
|
||||
training_templates_smallest = [
|
||||
'demoura {}',
|
||||
'joepenna {}',
|
||||
]
|
||||
|
||||
reg_templates_smallest = [
|
||||
|
@ -28,6 +28,7 @@ per_img_token_list = [
|
|||
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
|
||||
]
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self,
|
||||
data_root,
|
||||
|
@ -41,16 +42,17 @@ class PersonalizedBase(Dataset):
|
|||
center_crop=False,
|
||||
mixing_prob=0.25,
|
||||
coarse_class_text=None,
|
||||
reg = False
|
||||
reg=False
|
||||
):
|
||||
|
||||
self.data_root = data_root
|
||||
|
||||
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||||
self.image_paths = [os.path.join(
|
||||
self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||||
|
||||
# self._length = len(self.image_paths)
|
||||
self.num_images = len(self.image_paths)
|
||||
self._length = self.num_images
|
||||
self._length = self.num_images
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
|
@ -61,7 +63,8 @@ class PersonalizedBase(Dataset):
|
|||
self.coarse_class_text = coarse_class_text
|
||||
|
||||
if per_image_tokens:
|
||||
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
assert self.num_images < len(
|
||||
per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
|
||||
if set == "train":
|
||||
self._length = self.num_images * repeats
|
||||
|
@ -90,26 +93,29 @@ class PersonalizedBase(Dataset):
|
|||
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
|
||||
|
||||
if not self.reg:
|
||||
text = random.choice(training_templates_smallest).format(placeholder_string)
|
||||
text = random.choice(training_templates_smallest).format(
|
||||
placeholder_string)
|
||||
else:
|
||||
text = random.choice(reg_templates_smallest).format(placeholder_string)
|
||||
|
||||
text = random.choice(reg_templates_smallest).format(
|
||||
placeholder_string)
|
||||
|
||||
example["caption"] = text
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
|
||||
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
h, w, = img.shape[0], img.shape[1]
|
||||
img = img[(h - crop) // 2:(h + crop) // 2,
|
||||
(w - crop) // 2:(w + crop) // 2]
|
||||
(w - crop) // 2:(w + crop) // 2]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
image = image.resize((self.size, self.size),
|
||||
resample=self.interpolation)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
||||
return example
|
||||
|
|
Loading…
Reference in New Issue