import numpy as np from torch.utils.data import Dataset from torchvision import transforms from ldm.data.data_loader import DataLoaderMultiAspect as dlma import math import ldm.data.dl_singleton as dls class EDValidateBatch(Dataset): def __init__(self, data_root, flip_p=0.0, repeats=1, debug_level=0, batch_size=1, set='val', ): self.data_root = data_root self.batch_size = batch_size if not dls.shared_dataloader: print("Creating new dataloader singleton") dls.shared_dataloader = dlma(data_root=data_root, debug_level=debug_level, batch_size=self.batch_size, flip_p=flip_p) self.image_train_items = dls.shared_dataloader.get_all_images() self.num_images = len(self.image_train_items) self._length = max(math.trunc(self.num_images * repeats), batch_size) - self.num_images % self.batch_size print() print(f" ** Validation Set: {set}, steps: {self._length / batch_size:.0f}, repeats: {repeats} ") print() def __len__(self): return self._length def __getitem__(self, i): idx = i % self.num_images image_train_item = self.image_train_items[idx] example = self.__get_image_for_trainer(image_train_item) return example @staticmethod def __get_image_for_trainer(image_train_item): example = {} image_train_tmp = image_train_item.hydrate() example["image"] = image_train_tmp.image example["caption"] = image_train_tmp.caption return example