model: base_learning_rate: 9.0e-07 target: ldm.models.diffusion.ddpm.LatentDiffusion params: reg_weight: 1.0 linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: caption image_size: 64 channels: 4 cond_stage_trainable: true # Note: different from the one we trained before conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False embedding_reg_weight: 0.0 unfreeze_model: True model_lr: 5.0e-7 # scheduler_config: # target: ldm.lr_scheduler.LambdaLinearScheduler # params: # verbosity_interval: 200 # warm_up_steps: 5 # max_decay_steps: 100 # lr_start: 6.0e-7 # lr_max: 8.0e-7 # lr_min: 1.0e-7 personalization_config: target: ldm.modules.embedding_manager.EmbeddingManager params: placeholder_strings: ["*"] initializer_words: ["sculpture"] per_image_tokens: false num_vectors_per_token: 1 progressive_words: False unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 512 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenCLIPEmbedder data: target: main.DataModuleFromConfig params: batch_size: 6 num_workers: 8 # should probably not exceed thread count on CPU, good idea to have more workers than batch_size wrap: falsegit train: target: ldm.data.every_dream.EveryDreamBatch params: size: 512 set: train repeats: 5 validation: target: ldm.data.personalized.PersonalizedBase params: size: 512 set: val repeats: 1 lightning: modelcheckpoint: params: every_n_epochs: 1 callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 300 max_images: 16 increase_log_steps: False trainer: benchmark: True max_epochs: 3 #precision: 16 # need lightning 1.6+ #num_nodes: 2 # for multigpu #check_val_every_n_epoch: 1