# script to test data loader by itself # run from trainer root directory # Ex: # python test/test_dl.py --data_root "x:/mytestdata/input" --batch_size 2 import argparse import ldm.data.data_loader as dl def main(data_root, batch_size, resolution): data_loader = dl.DataLoaderMultiAspect(data_root=data_root, batch_size=batch_size, resolution=resolution, debug_level=1) image_caption_pairs = data_loader.get_all_images() print(f"Loaded {len(image_caption_pairs)} image-caption pairs") print(f"**** Done loading. Loaded {len(image_caption_pairs)} images from data_root: {data_root} ****") if __name__ == "__main__": """ test the data loader by itself, outputs buckets and image counts data_root: root folder of training data batch_size: number of images per batch """ parser = argparse.ArgumentParser() parser.add_argument("--data_root", type=str, default="input", help="root folder of training data") parser.add_argument("--batch_size", type=int, default=4, help="number of images per batch") parser.add_argument("--resolution", type=int, default=512, help="resolution to train", choices=[512, 576, 640, 704, 768]) args = parser.parse_args() main(data_root=args.data_root, batch_size=args.batch_size, resolution=args.resolution)