import os from PIL import Image import random from ldm.data.image_train_item import ImageTrainItem ASPECTS = [[512,512], # 1 262144\ [576,448],[448,576], # 1.29 258048\ [640,384],[384,640], # 1.67 245760\ [768,320],[320,768], # 2.4 245760\ [832,256],[256,832], # 3.25 212992\ [896,256],[256,896], # 3.5 229376\ [960,256],[256,960], # 3.75 245760\ [1024,256],[256,1024] # 4 245760\ ] class DataLoaderMultiAspect(): def __init__(self, data_root, seed=555, debug_level=0, batch_size=1, flip_p=0.0): self.image_paths = [] self.debug_level = debug_level self.flip_p = flip_p print(" Preloading images...") self.__recurse_data_root(self=self, recurse_root=data_root) random.Random(seed).shuffle(self.image_paths) prepared_train_data = self.__prescan_images(debug_level, self.image_paths, flip_p) # ImageTrainItem[] self.image_caption_pairs = self.__bucketize_images(prepared_train_data, batch_size=batch_size, debug_level=debug_level) print(f" * DLMA Example {self.image_caption_pairs[0]} images") def get_all_images(self): return self.image_caption_pairs @staticmethod def __prescan_images(debug_level: int, image_paths: list, flip_p=0.0): decorated_image_train_items = [] for pathname in image_paths: caption_from_filename = os.path.splitext(os.path.basename(pathname))[0].split("_")[0] txt_file_path = os.path.splitext(pathname)[0] + ".txt" if os.path.exists(txt_file_path): try: with open(txt_file_path, 'r') as f: identifier = f.readline().rstrip() if len(identifier) < 1: raise ValueError(f" *** Could not find valid text in: {txt_file_path}") except: print(f" *** Error reading {txt_file_path} to get caption, falling back to filename") identifier = caption_from_filename pass else: identifier = caption_from_filename image = Image.open(pathname) width, height = image.size image_aspect = width / height target_wh = min(ASPECTS, key=lambda x:abs(x[0]/x[1]-image_aspect)) image_train_item = ImageTrainItem(image=None, caption=identifier, target_wh=target_wh, pathname=pathname, flip_p=flip_p) decorated_image_train_items.append(image_train_item) return decorated_image_train_items @staticmethod def __bucketize_images(prepared_train_data: list, batch_size=1, debug_level=0): # TODO: this is not terribly efficient but at least linear time buckets = {} for image_caption_pair in prepared_train_data: target_wh = image_caption_pair.target_wh if (target_wh[0],target_wh[1]) not in buckets: buckets[(target_wh[0],target_wh[1])] = [] buckets[(target_wh[0],target_wh[1])].append(image_caption_pair) print(f" ** Number of buckets: {len(buckets)}") if len(buckets) > 1: for bucket in buckets: truncate_count = len(buckets[bucket]) % batch_size current_bucket_size = len(buckets[bucket]) buckets[bucket] = buckets[bucket][:current_bucket_size - truncate_count] print(f" ** Bucket {bucket} with {current_bucket_size} will drop {truncate_count} images due to batch size {batch_size}") if debug_level > 0 else None # flatten the buckets image_caption_pairs = [] for bucket in buckets: image_caption_pairs.extend(buckets[bucket]) return image_caption_pairs @staticmethod def __recurse_data_root(self, recurse_root): for f in os.listdir(recurse_root): current = os.path.join(recurse_root, f) # get file ext if os.path.isfile(current): ext = os.path.splitext(f)[1] if ext in ['.jpg', '.jpeg', '.png', '.bmp', '.webp']: self.image_paths.append(current) sub_dirs = [] for d in os.listdir(recurse_root): current = os.path.join(recurse_root, d) if os.path.isdir(current): sub_dirs.append(current) for dir in sub_dirs: self.__recurse_data_root(self=self, recurse_root=dir)