model: base_learning_rate: 1.2e-6 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: caption image_size: 64 channels: 4 cond_stage_trainable: true # Note: different from the one we trained before conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False unfreeze_model: True model_lr: 1.1e-6 #use_scheduler: True scheduler_config: target: ldm.lr_scheduler.EveryDreamScheduler params: f_start: 5.0e-1 # starting LR multiplier warm_up_steps: 50 # number of steps to warm up to f_start before decaying LR f_max: 1.0 # maximum LR multiplier f_min: 5.0e-1 # minimum LR multiplier steps_to_min: 10000 # number of steps to decay from f_max to f_min verbosity_interval: 200 # how often to print LR multiplier (steps) unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 512 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenCLIPEmbedder data: target: main.DataModuleFromConfig params: batch_size: 6 num_workers: 12 wrap: falsegit train: target: ldm.data.every_dream.EveryDreamBatch params: repeats: 1 # rough suggestions: 5 with 5000+ images, 15 for 1000 images, use micro yaml for <100 debug_level: 1 # 1 to print if images are dropped due to multiple-aspect ratio image batching conditional_dropout: 0.08 # experimental, likelihood to drop the caption, may help with poorly captioned images crop_jitter: 20 # adds N pixels of jitter to cropping algorithm for non-square images only resolution: 512 # defines max pixels for all aspects, 512, 576, 640, 704, or 768 seed: 555 # seed used to shuffle the dataset, keep constant for reproducibility validation: target: ldm.data.ed_validate.EDValidateBatch params: repeats: 0.25 test: target: ldm.data.ed_validate.EDValidateBatch params: repeats: 0.1 lightning: modelcheckpoint: params: every_n_epochs: 1 #every_n_train_steps: 1500 # can only use every_n_epochs OR every_n_train_steps, suggest you stick with epochs save_last: True save_top_k: 99 filename: "{epoch:02d}-{step:05d}" callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 400 max_images: 16 increase_log_steps: False trainer: benchmark: True max_epochs: 5 max_steps: 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want... check_val_every_n_epoch: 1 gpus: 0,