model: base_learning_rate: 1.0e-6 target: ldm.models.diffusion.ddpm.LatentDiffusion params: reg_weight: 1.0 linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: caption image_size: 64 channels: 4 cond_stage_trainable: true # Note: different from the one we trained before conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False embedding_reg_weight: 0.0 unfreeze_model: True model_lr: 1.0e-6 unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 512 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenCLIPEmbedder data: target: main.DataModuleFromConfig params: batch_size: 6 num_workers: 8 wrap: falsegit train: target: ldm.data.every_dream.EveryDreamBatch params: size: 512 set: train repeats: 5 # suggested setting: 5 with 5000 images, 10 for 1000 images, 50 for 500 images, 100 for <50 images validation: target: ldm.data.personalized.PersonalizedBase params: size: 512 set: val repeats: 1 lightning: modelcheckpoint: params: every_n_epochs: 1 #every_n_train_steps: 1400 # can only use epoch or train step checkpoints save_on_train_epoch_end: False # avoid dupes because it is saved after validation callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 200 max_images: 16 increase_log_steps: False trainer: benchmark: True max_epochs: 3 # epoch step count will be (total training images) / batch_size * repeats, suggest 1-4 epochs depending on dataset size and repeats max_steps: 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want... #check_val_every_n_epoch: 2 # can skip val every epoch if you want by increasing value #precision: 16 # need lightning 1.6+ ?? *WIP* #num_nodes: 2 # for multigpu *WIP*