import os import numpy as np import PIL from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from pathlib import Path class PersonalizedBase(Dataset): def __init__(self, data_root, size=None, repeats=100, interpolation="bicubic", flip_p=0.0, set="train", center_crop=False, reg=False ): self.data_root = data_root self.image_paths = [] classes = os.listdir(self.data_root) for cl in classes: class_path = os.path.join(self.data_root, cl) for file_path in os.listdir(class_path): image_path = os.path.join(class_path, file_path) self.image_paths.append(image_path) # self._length = len(self.image_paths) self.num_images = len(self.image_paths) self._length = self.num_images self.center_crop = center_crop if set == "train": self._length = self.num_images * repeats self.size = size self.interpolation = {"linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, }[interpolation] self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.reg = reg def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") pathname = Path(self.image_paths[i % self.num_images]).name parts = pathname.split("_") identifier = parts[0] example["caption"] = identifier # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) h, w, = img.shape[0], img.shape[1] img = img[(h - crop) // 2:(h + crop) // 2, (w - crop) // 2:(w + crop) // 2] image = Image.fromarray(img) if self.size is not None: image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip(image) image = np.array(image).astype(np.uint8) example["image"] = (image / 127.5 - 1.0).astype(np.float32) return example