import numpy as np from torch.utils.data import Dataset from torchvision import transforms from ldm.data.data_loader import DataLoaderMultiAspect as dlma import math import ldm.data.dl_singleton as dls class EDValidateBatch(Dataset): def __init__(self, data_root, flip_p=0.0, repeats=1, debug_level=0, batch_size=1, set='val', ): self.data_root = data_root self.batch_size = batch_size if not dls.shared_dataloader: print("Creating new dataloader singleton") dls.shared_dataloader = dlma(data_root=data_root, debug_level=debug_level, batch_size=self.batch_size) self.image_caption_pairs = dls.shared_dataloader.get_all_images() self.num_images = len(self.image_caption_pairs) self._length = max(math.trunc(self.num_images * repeats), batch_size) - self.num_images % self.batch_size print() print(f" ** Validation Set: {set}, num_images: {self.num_images}, length: {self._length}, repeats: {repeats}, batch_size: {self.batch_size}, ") print(f" ** Validation steps: {self._length / batch_size:.0f}") print() self.flip = transforms.RandomHorizontalFlip(p=flip_p) def __len__(self): return self._length def __getitem__(self, i): idx = i % len(self.image_caption_pairs) example = self.get_image(self.image_caption_pairs[idx]) return example def get_image(self, image_caption_pair): example = {} image = image_caption_pair[0] if not image.mode == "RGB": image = image.convert("RGB") identifier = image_caption_pair[1] image = self.flip(image) image = np.array(image).astype(np.uint8) example["image"] = (image / 127.5 - 1.0).astype(np.float32) example["caption"] = identifier return example