import os import numpy as np import PIL from PIL import Image from torch.utils.data import Dataset from torchvision import transforms import random training_templates_smallest = [ 'joepenna {}', ] reg_templates_smallest = [ '{}', ] imagenet_templates_small = [ '{}', ] imagenet_dual_templates_small = [ '{} with {}' ] per_img_token_list = [ 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת', ] class PersonalizedBase(Dataset): def __init__(self, data_root, size=None, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="dog", per_image_tokens=False, center_crop=False, mixing_prob=0.25, coarse_class_text=None, reg=False ): self.data_root = data_root self.image_paths = [os.path.join( self.data_root, file_path) for file_path in os.listdir(self.data_root)] # self._length = len(self.image_paths) self.num_images = len(self.image_paths) self._length = self.num_images self.placeholder_token = placeholder_token self.per_image_tokens = per_image_tokens self.center_crop = center_crop self.mixing_prob = mixing_prob self.coarse_class_text = coarse_class_text if per_image_tokens: assert self.num_images < len( per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'." if set == "train": self._length = self.num_images * repeats self.size = size self.interpolation = {"linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, }[interpolation] self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.reg = reg def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == "RGB": image = image.convert("RGB") placeholder_string = self.placeholder_token if self.coarse_class_text: placeholder_string = f"{self.coarse_class_text} {placeholder_string}" if not self.reg: text = random.choice(training_templates_smallest).format( placeholder_string) else: text = random.choice(reg_templates_smallest).format( placeholder_string) example["caption"] = text # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) h, w, = img.shape[0], img.shape[1] img = img[(h - crop) // 2:(h + crop) // 2, (w - crop) // 2:(w + crop) // 2] image = Image.fromarray(img) if self.size is not None: image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip(image) image = np.array(image).astype(np.uint8) example["image"] = (image / 127.5 - 1.0).astype(np.float32) return example