import os import torch import argparse import glob def prune_it(p, full_precision=False, keep_only_ema=False): print(f"prunin' in path: {p}") size_initial = os.path.getsize(p) nsd = dict() sd = torch.load(p, map_location="cpu") print(sd.keys()) for k in sd.keys(): if k != "optimizer_states": nsd[k] = sd[k] else: print(f"removing optimizer states for path {p}") if "global_step" in sd: print(f"This is global step {sd['global_step']}.") if keep_only_ema: sd = nsd["state_dict"].copy() # infer ema keys ema_keys = {k: "model_ema." + k[6:].replace(".", ".") for k in sd.keys() if k.startswith("model.")} new_sd = dict() for k in sd: if k in ema_keys: if full_precision: new_sd[k] = sd[ema_keys[k]] else: new_sd[k] = sd[ema_keys[k]].half() new_sd = dict() for k in sd: if full_precision: new_sd[k] = sd[k] else: new_sd[k] = sd[k].half() nsd['state_dict'] = new_sd fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt" print(f"saving pruned checkpoint at: {fn}") elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]: if full_precision: new_sd[k] = sd[k] else: new_sd[k] = sd[k].half() assert len(new_sd) == len(sd) - len(ema_keys) nsd["state_dict"] = new_sd else: sd = nsd['state_dict'].copy() torch.save(nsd, fn) newsize = os.path.getsize(fn) MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \ f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states" if keep_only_ema: MSG += " and non-EMA weights" print(MSG) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Pruning') parser.add_argument('--ckpt', type=str, default=False, help='path to model ckpt') parser.add_argument("--full", action="store_true", help="Whether or not to save the model in full precision.") args = parser.parse_args() ckpt = args.ckpt full_precision = args.full prune_it(ckpt, full_precision)