# script to what cropping does to your images # execute from root everydream-trainer folder # ex. # (everydream) R:\everydream-trainer>python scripts/test_crop.py # dumps to /test/output from ldm.data.every_dream import EveryDreamBatch import time import argparse parser = argparse.ArgumentParser() parser.add_argument('--data_root', type=str, default=None, help='root path of all your training images, will be recursively searched for images') parser.add_argument('--resolution', type=int, default=512, help='resolution class, 512, 576, 640, 704, or 768') args = parser.parse_args() s = time.perf_counter() # put in your own data_root here, WARNING don't do this on a lot of images unless you are prepared for it... if args.data_root is None: data_root = "R:/everydream-trainer/test/input" else: data_root = args.data_root debug_level = 3 # 3 = dump images to disk after cropping and a bunch of crap into the console be warned batch_size = 1 repeats = 1 crop_jitter = 50 test_cycles = 10 resolution = args.resolution # 512, 576, 640, 704, 768 every_dream_batch = EveryDreamBatch(data_root=data_root, flip_p=0.0, debug_level=3, \ batch_size=batch_size, repeats=repeats, crop_jitter=crop_jitter, \ conditional_dropout=0.1, resolution=resolution, \ ) for i in range(0,len(every_dream_batch)): _ = every_dream_batch[i] print(f" *TEST* test cycles: {test_cycles}") elapsed = time.perf_counter() - s print(f"{__file__} executed in {elapsed:5.2f} seconds.")