164 lines
4.8 KiB
Python
164 lines
4.8 KiB
Python
import argparse, os, sys, glob
|
|
import torch
|
|
import numpy as np
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image
|
|
from tqdm import tqdm, trange
|
|
from einops import rearrange
|
|
from torchvision.utils import make_grid, save_image
|
|
|
|
from ldm.util import instantiate_from_config
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
print(f"Loading model from {ckpt}")
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
sd = pl_sd["state_dict"]
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0 and verbose:
|
|
print("missing keys:")
|
|
print(m)
|
|
if len(u) > 0 and verbose:
|
|
print("unexpected keys:")
|
|
print(u)
|
|
|
|
model.cuda()
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--prompt",
|
|
type=str,
|
|
nargs="?",
|
|
default="a painting of boy walking his dog",
|
|
help="the prompt to render"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--outdir",
|
|
type=str,
|
|
nargs="?",
|
|
help="dir to write results to",
|
|
default="outputs"
|
|
)
|
|
parser.add_argument(
|
|
"--ddim_steps",
|
|
type=int,
|
|
default=50,
|
|
help="number of ddim sampling steps",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--plms",
|
|
action='store_true',
|
|
help="use plms sampling",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ddim_eta",
|
|
type=float,
|
|
default=0.0,
|
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
|
)
|
|
parser.add_argument(
|
|
"--n_iter",
|
|
type=int,
|
|
default=1,
|
|
help="sample this often",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--H",
|
|
type=int,
|
|
default=512,
|
|
help="image height, in pixel space",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--W",
|
|
type=int,
|
|
default=512,
|
|
help="image width, in pixel space",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--n_samples",
|
|
type=int,
|
|
default=1,
|
|
help="how many samples to produce for the given prompt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--scale",
|
|
type=float,
|
|
default=5.0,
|
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ckpt_path",
|
|
type=str,
|
|
default="/data/pretrained_models/ldm/text2img-large/model.ckpt",
|
|
help="Path to pretrained ldm text2img model")
|
|
|
|
|
|
opt = parser.parse_args()
|
|
|
|
|
|
config = OmegaConf.load("configs/stable-diffusion/v1-inference.yaml") # TODO: Optionally download from same location as ckpt and chnage this logic
|
|
model = load_model_from_config(config, opt.ckpt_path) # TODO: check path
|
|
#model.embedding_manager.load(opt.embedding_path)
|
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
model = model.to(device)
|
|
|
|
if opt.plms:
|
|
sampler = PLMSSampler(model)
|
|
else:
|
|
sampler = DDIMSampler(model)
|
|
|
|
os.makedirs(opt.outdir, exist_ok=True)
|
|
outpath = opt.outdir
|
|
|
|
prompt = opt.prompt
|
|
|
|
|
|
sample_path = outpath
|
|
os.makedirs(sample_path, exist_ok=True)
|
|
base_count = len(os.listdir(sample_path))
|
|
|
|
all_samples=list()
|
|
with torch.no_grad():
|
|
with model.ema_scope():
|
|
uc = None
|
|
if opt.scale != 1.0:
|
|
uc = model.get_learned_conditioning(opt.n_samples * [""])
|
|
for n in trange(opt.n_iter, desc="Sampling"):
|
|
c = model.get_learned_conditioning(opt.n_samples * [prompt])
|
|
shape = [4, opt.H//8, opt.W//8]
|
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
|
conditioning=c,
|
|
batch_size=opt.n_samples,
|
|
shape=shape,
|
|
verbose=False,
|
|
unconditional_guidance_scale=opt.scale,
|
|
unconditional_conditioning=uc,
|
|
eta=opt.ddim_eta)
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
|
|
|
for x_sample in x_samples_ddim:
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.jpg"))
|
|
base_count += 1
|
|
all_samples.append(x_samples_ddim)
|
|
|
|
print(f"Your samples are ready and waiting four you here: \n{outpath} \nEnjoy.")
|