EveryDream-trainer/ldm/data/personalized.py

220 lines
6.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
training_templates_smallest = [
'photo of a sks {}',
]
reg_templates_smallest = [
'photo of a {}',
]
imagenet_templates_small = [
'a photo of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a photo of a clean {}',
'a photo of a dirty {}',
'a dark photo of the {}',
'a photo of my {}',
'a photo of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a photo of the {}',
'a good photo of the {}',
'a photo of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a photo of the clean {}',
'a rendition of a {}',
'a photo of a nice {}',
'a good photo of a {}',
'a photo of the nice {}',
'a photo of the small {}',
'a photo of the weird {}',
'a photo of the large {}',
'a photo of a cool {}',
'a photo of a small {}',
'an illustration of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'an illustration of a clean {}',
'an illustration of a dirty {}',
'a dark photo of the {}',
'an illustration of my {}',
'an illustration of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'an illustration of the {}',
'a good photo of the {}',
'an illustration of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'an illustration of the clean {}',
'a rendition of a {}',
'an illustration of a nice {}',
'a good photo of a {}',
'an illustration of the nice {}',
'an illustration of the small {}',
'an illustration of the weird {}',
'an illustration of the large {}',
'an illustration of a cool {}',
'an illustration of a small {}',
'a depiction of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a depiction of a clean {}',
'a depiction of a dirty {}',
'a dark photo of the {}',
'a depiction of my {}',
'a depiction of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a depiction of the {}',
'a good photo of the {}',
'a depiction of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a depiction of the clean {}',
'a rendition of a {}',
'a depiction of a nice {}',
'a good photo of a {}',
'a depiction of the nice {}',
'a depiction of the small {}',
'a depiction of the weird {}',
'a depiction of the large {}',
'a depiction of a cool {}',
'a depiction of a small {}',
]
imagenet_dual_templates_small = [
'a photo of a {} with {}',
'a rendering of a {} with {}',
'a cropped photo of the {} with {}',
'the photo of a {} with {}',
'a photo of a clean {} with {}',
'a photo of a dirty {} with {}',
'a dark photo of the {} with {}',
'a photo of my {} with {}',
'a photo of the cool {} with {}',
'a close-up photo of a {} with {}',
'a bright photo of the {} with {}',
'a cropped photo of a {} with {}',
'a photo of the {} with {}',
'a good photo of the {} with {}',
'a photo of one {} with {}',
'a close-up photo of the {} with {}',
'a rendition of the {} with {}',
'a photo of the clean {} with {}',
'a rendition of a {} with {}',
'a photo of a nice {} with {}',
'a good photo of a {} with {}',
'a photo of the nice {} with {}',
'a photo of the small {} with {}',
'a photo of the weird {} with {}',
'a photo of the large {} with {}',
'a photo of a cool {} with {}',
'a photo of a small {} with {}',
]
per_img_token_list = [
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
]
class PersonalizedBase(Dataset):
def __init__(self,
data_root,
size=None,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="dog",
per_image_tokens=False,
center_crop=False,
mixing_prob=0.25,
coarse_class_text=None,
reg = False
):
self.data_root = data_root
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
self.mixing_prob = mixing_prob
self.coarse_class_text = coarse_class_text
if per_image_tokens:
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
if set == "train":
self._length = self.num_images * repeats
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.reg = reg
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
if self.coarse_class_text:
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
if not self.reg:
text = random.choice(training_templates_smallest).format(placeholder_string)
else:
text = random.choice(reg_templates_smallest).format(placeholder_string)
example["caption"] = text
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example