54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
import numpy as np
|
|
from torch.utils.data import Dataset
|
|
from ldm.data.data_loader import DataLoaderMultiAspect as dlma
|
|
import math
|
|
import ldm.data.dl_singleton as dls
|
|
from ldm.data.image_train_item import ImageTrainItem
|
|
|
|
class EDValidateBatch(Dataset):
|
|
def __init__(self,
|
|
data_root,
|
|
flip_p=0.0,
|
|
repeats=1,
|
|
debug_level=0,
|
|
batch_size=1,
|
|
set='val',
|
|
):
|
|
self.data_root = data_root
|
|
self.batch_size = batch_size
|
|
|
|
if not dls.shared_dataloader:
|
|
print("Creating new dataloader singleton")
|
|
dls.shared_dataloader = dlma(data_root=data_root, debug_level=debug_level, batch_size=self.batch_size, flip_p=flip_p)
|
|
|
|
self.image_train_items = dls.shared_dataloader.get_all_images()
|
|
|
|
self.num_images = len(self.image_train_items)
|
|
|
|
self._length = max(math.trunc(self.num_images * repeats), batch_size) - self.num_images % self.batch_size
|
|
|
|
print()
|
|
print(f" ** Validation Set: {set}, steps: {self._length / batch_size:.0f}, repeats: {repeats} ")
|
|
print()
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
def __getitem__(self, i):
|
|
idx = i % self.num_images
|
|
image_train_item = self.image_train_items[idx]
|
|
|
|
example = self.__get_image_for_trainer(image_train_item)
|
|
return example
|
|
|
|
@staticmethod
|
|
def __get_image_for_trainer(image_train_item: ImageTrainItem):
|
|
example = {}
|
|
|
|
image_train_tmp = image_train_item.hydrate()
|
|
|
|
example["image"] = image_train_tmp.image
|
|
example["caption"] = image_train_tmp.caption
|
|
|
|
return example
|
|
|