36 lines
1.4 KiB
Python
36 lines
1.4 KiB
Python
# script to test data loader by itself
|
|
# run from training root, edit the data_root manually
|
|
|
|
from ldm.data.every_dream import EveryDreamBatch
|
|
import time
|
|
|
|
s = time.perf_counter()
|
|
|
|
#data_root = "r:/everydream-trainer/test/input"
|
|
data_root = "r:/everydream-trainer/training_samples"
|
|
|
|
batch_size = 6
|
|
repeats=3
|
|
every_dream_batch = EveryDreamBatch(data_root=data_root, flip_p=0.0, debug_level=2, batch_size=batch_size, repeats=repeats, crop_jitter=25, conditional_dropout=0.3, resolution=512)
|
|
|
|
print(f" *TEST* EveryDreamBatch epoch image length: {len(every_dream_batch)}")
|
|
print(f" max test cycles: {int(len(every_dream_batch) / batch_size)}, batch_size: {batch_size}, repeats: {repeats}")
|
|
i = 0
|
|
|
|
while i < 99: # and i < len(every_dream_batch):
|
|
curr_batch = []
|
|
for j in range(i,i+batch_size):
|
|
curr_batch.append(every_dream_batch[j])
|
|
|
|
# all in batch must have the same image size
|
|
assert all(x == curr_batch[0]['image'].shape for x in [e['image'].shape for e in curr_batch])
|
|
assert all(x[0] > 2 for x in [e['image'].shape for e in curr_batch])
|
|
|
|
#print(f"idx: {i}, batch sample: shape: {curr_batch[0]['image'].shape}: {curr_batch[0]['caption']}")
|
|
|
|
i += batch_size
|
|
|
|
print(f" *TEST* test cycles: {i}")
|
|
print(f" *TEST* EveryDreamBatch epoch image length: {len(every_dream_batch)}")
|
|
elapsed = time.perf_counter() - s
|
|
print(f"{__file__} executed in {elapsed:5.2f} seconds.") |