EveryDream-trainer/configs/stable-diffusion/v1-finetune_test.yaml

121 lines
3.7 KiB
YAML

model:
base_learning_rate: 1.2e-6
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 64
channels: 4
cond_stage_trainable: true # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
unfreeze_model: True
model_lr: 1.1e-6
#use_scheduler: True
scheduler_config:
target: ldm.lr_scheduler.EveryDreamScheduler
params:
f_start: 5.0e-1 # starting LR multiplier
warm_up_steps: 50 # number of steps to warm up to f_start before decaying LR
f_max: 1.0 # maximum LR multiplier
f_min: 5.0e-1 # minimum LR multiplier
steps_to_min: 10000 # number of steps to decay from f_max to f_min
verbosity_interval: 200 # how often to print LR multiplier (steps)
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 512
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 6
num_workers: 12
wrap: falsegit
train:
target: ldm.data.every_dream.EveryDreamBatch
params:
repeats: 1 # rough suggestions: 5 with 5000+ images, 15 for 1000 images, use micro yaml for <100
debug_level: 1 # 1 to print if images are dropped due to multiple-aspect ratio image batching
conditional_dropout: 0.08 # experimental, likelihood to drop the caption, may help with poorly captioned images
crop_jitter: 20 # adds N pixels of jitter to cropping algorithm for non-square images only
resolution: 512 # defines max pixels for all aspects, 512, 576, 640, 704, or 768
seed: 555 # seed used to shuffle the dataset, keep constant for reproducibility
validation:
target: ldm.data.ed_validate.EDValidateBatch
params:
repeats: 0.25
test:
target: ldm.data.ed_validate.EDValidateBatch
params:
repeats: 0.1
lightning:
modelcheckpoint:
params:
every_n_epochs: 1
#every_n_train_steps: 1500 # can only use every_n_epochs OR every_n_train_steps, suggest you stick with epochs
save_last: True
save_top_k: 99
filename: "{epoch:02d}-{step:05d}"
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 400
max_images: 16
increase_log_steps: False
trainer:
benchmark: True
max_epochs: 5
max_steps: 99000 # better to end on epochs not steps, especially with >500 images to ensure even distribution, but you can set this if you really want...
check_val_every_n_epoch: 1
gpus: 0,