EveryDream/scripts/auto_caption.py

179 lines
5.7 KiB
Python
Raw Normal View History

2022-10-30 19:59:26 -06:00
import argparse
import glob
import os
from PIL import Image
import sys
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import torch
import aiohttp
import asyncio
SIZE = 384
def get_parser(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"--img_dir",
type=str,
nargs="?",
const=True,
default="input",
help="directory with images to be captioned",
),
parser.add_argument(
"--out_dir",
type=str,
nargs="?",
const=True,
default="output",
help="directory to put captioned images",
),
parser.add_argument(
"--format",
type=str,
nargs="?",
const=True,
default="filename",
help="'filename', 'json', or 'parquet'",
),
parser.add_argument(
"--nucleus",
type=bool,
nargs="?",
const=True,
default=False,
help="use nucleus sampling instead of beam",
),
parser.add_argument(
"--q_factor",
type=float,
nargs="?",
const=True,
default=0.8,
help="adjusts the likelihood of a word being repeated",
),
parser.add_argument(
"--min_length",
type=int,
nargs="?",
const=True,
default=24,
help="adjusts the likelihood of a word being repeated",
)
return parser
def load_image(raw_image, device):
transform = transforms.Compose([
#transforms.CenterCrop(SIZE),
transforms.Resize((SIZE, SIZE), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
image = transform(raw_image).unsqueeze(0).to(device)
return image
async def main(opt):
print("starting")
import models.blip
sample = False
if opt.nucleus:
sample = True
input_dir = os.path.join(os.getcwd(), opt.img_dir)
print("input_dir: ", input_dir)
config_path = os.path.join(os.getcwd(), "scripts/BLIP/configs/med_config.json")
model_cache_path = ".cache/model_base_caption_capfilt_large.pth"
model_path = os.path.join(os.getcwd(), model_cache_path)
if not os.path.exists(model_path):
print(f"Downloading model to {model_path}... please wait")
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
async with aiohttp.ClientSession() as session:
async with session.get(blip_model_url) as res:
result = await res.read()
with open(model_path, 'wb') as f:
f.write(result)
print(f"Model cached to: {model_path}")
else:
print(f"Model already cached to: {model_path}")
blip_decoder = models.blip.blip_decoder(pretrained=model_path, image_size=384, vit='base', med_config=config_path)
blip_decoder.eval()
print("loading model to cuda")
blip_decoder = blip_decoder.to(torch.device("cuda"))
ext = ('.jpg', '.jpeg', '.png', '.webp', '.tif', '.tga', '.tiff', '.bmp', '.gif')
i = 0
for idx, img_file_name in enumerate(glob.iglob(os.path.join(opt.img_dir, "*.*"))):
if img_file_name.endswith(ext):
caption = None
file_ext = os.path.splitext(img_file_name)[1]
if (file_ext in ext):
with open(img_file_name, "rb") as input_file:
print("working image: ", img_file_name)
image = Image.open(input_file)
image = load_image(image, device=torch.device("cuda"))
if opt.nucleus:
captions = blip_decoder.generate(image, sample=True, top_p=opt.q_factor)
else:
captions = blip_decoder.generate(image, sample=sample, num_beams=16, min_length=opt.min_length, \
max_length=48, repetition_penalty=opt.q_factor)
caption = captions[0]
input_file.seek(0)
data = input_file.read()
input_file.close()
if opt.format in ["mrwho","joepenna"]:
prefix = f"{i:05}@"
i += 1
caption = prefix+caption
out_file = os.path.join(opt.out_dir, f"{caption}{file_ext}")
print(" out_file:", out_file)
print()
if opt.format in ["filename","mrwho"]:
#out_file = os.path.join(out_file)
with open(out_file, "wb") as out_file:
out_file.write(data)
elif opt.format == "json":
raise NotImplementedError
elif opt.format == "parquet":
raise NotImplementedError
def isWindows():
return sys.platform.startswith("win")
if __name__ == "__main__":
print("starting")
parser = get_parser()
opt = parser.parse_args()
if opt.format not in ["filename", "json", "mrwho", "joepenna", "parquet"]:
raise ValueError("format must be 'filename', 'json', or 'parquet'")
if (isWindows()):
print("Windows detected, using asyncio.WindowsSelectorEventLoopPolicy")
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
else:
print("Unix detected, using default asyncio event loop policy")
blip_path = os.path.join(os.getcwd(), "scripts/BLIP")
sys.path.append(blip_path)
asyncio.run(main(opt))