EveryDream2trainer/utils/log_wrapper.py

82 lines
2.9 KiB
Python
Raw Permalink Normal View History

2022-12-30 21:04:00 -07:00
"""
Copyright [2022] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
import os
import time
2023-01-15 20:07:37 -07:00
from colorama import Fore, Style
2022-12-30 21:04:00 -07:00
2023-01-15 20:07:37 -07:00
from tensorboard import SummaryWriter
import wandb
class LogWrapper():
2022-12-30 21:04:00 -07:00
"""
singleton for logging
"""
2023-01-15 20:07:37 -07:00
def __init__(self, args, wandb=False):
self.logdir = args.logdir
self.wandb = wandb
if wandb:
wandb.init(project=args.project_name, sync_tensorboard=True)
else:
self.log_writer = SummaryWriter(log_dir=args.logdir,
flush_secs=5,
comment="EveryDream2FineTunes",
)
2022-12-30 21:04:00 -07:00
start_time = time.strftime("%Y%m%d-%H%M")
2023-01-15 20:07:37 -07:00
log_file = os.path.join(args.logdir, f"log-{args.project_name}-{start_time}.txt")
2022-12-30 21:04:00 -07:00
self.logger = logging.getLogger(__name__)
console = logging.StreamHandler()
self.logger.addHandler(console)
2023-01-15 20:07:37 -07:00
file = logging.FileHandler(log_file, mode="a", encoding=None, delay=False)
2022-12-30 21:04:00 -07:00
self.logger.addHandler(file)
2023-01-15 20:07:37 -07:00
def add_image():
"""
log_writer.add_image(tag=f"sample_{i}", img_tensor=tfimage, global_step=gs)
else:
log_writer.add_image(tag=f"sample_{i}_{clean_prompt[:100]}", img_tensor=tfimage, global_step=gs)
"""
pass
def add_scalar(self, tag: str, img_tensor: float, global_step: int):
if self.wandb:
wandb.log({tag: img_tensor}, step=global_step)
else:
self.log_writer.add_image(tag, img_tensor, global_step)
def append_epoch_log(self, global_step: int, epoch_pbar, gpu, log_writer, **logs):
"""
updates the vram usage for the epoch
"""
gpu_used_mem, gpu_total_mem = gpu.get_gpu_memory()
self.add_scalar("performance/vram", gpu_used_mem, global_step)
epoch_mem_color = Style.RESET_ALL
if gpu_used_mem > 0.93 * gpu_total_mem:
epoch_mem_color = Fore.LIGHTRED_EX
elif gpu_used_mem > 0.85 * gpu_total_mem:
epoch_mem_color = Fore.LIGHTYELLOW_EX
elif gpu_used_mem > 0.7 * gpu_total_mem:
epoch_mem_color = Fore.LIGHTGREEN_EX
elif gpu_used_mem < 0.5 * gpu_total_mem:
epoch_mem_color = Fore.LIGHTBLUE_EX
if logs is not None:
epoch_pbar.set_postfix(**logs, vram=f"{epoch_mem_color}{gpu_used_mem}/{gpu_total_mem} MB{Style.RESET_ALL} gs:{global_step}")