EveryDream2trainer/data/resolver.py

214 lines
7.7 KiB
Python
Raw Normal View History

import json
import logging
import os
import typing
import zipfile
import argparse
import tqdm
from colorama import Fore, Style
from data.image_train_item import ImageCaption, ImageTrainItem
class DataResolver:
def __init__(self, args: argparse.Namespace):
"""
:param args: EveryDream configuration, an `argparse.Namespace` object.
"""
self.aspects = args.aspects
self.flip_p = args.flip_p
def image_train_items(self, data_root: str) -> list[ImageTrainItem]:
"""
Get the list of `ImageTrainItem` for the given data root.
:param data_root: The data root, a directory, a file, etc..
:return: The list of `ImageTrainItem`.
"""
raise NotImplementedError()
2023-01-23 00:58:25 -07:00
def image_train_item(self, image_path: str, caption: ImageCaption, multiplier: float=1) -> ImageTrainItem:
return ImageTrainItem(
image=None,
caption=caption,
aspects=self.aspects,
pathname=image_path,
flip_p=self.flip_p,
multiplier=multiplier
)
class JSONResolver(DataResolver):
def image_train_items(self, json_path: str) -> list[ImageTrainItem]:
"""
Create `ImageTrainItem` objects with metadata for hydration later.
Extracts images and captions from a JSON file.
:param json_path: The path to the JSON file.
"""
items = []
with open(json_path, encoding='utf-8', mode='r') as f:
json_data = json.load(f)
for data in tqdm.tqdm(json_data):
caption = JSONResolver.image_caption(data)
if caption:
image_value = JSONResolver.get_image_value(data)
item = self.image_train_item(image_value, caption)
if item:
items.append(item)
return items
@staticmethod
def get_image_value(json_data: dict) -> typing.Optional[str]:
"""
Get the image from the json data if possible.
:param json_data: The json data, a dict.
:return: The image, or None if not found.
"""
image_value = json_data.get("image", None)
if isinstance(image_value, str):
image_value = image_value.strip()
if os.path.exists(image_value):
return image_value
@staticmethod
def get_caption_value(json_data: dict) -> typing.Optional[str]:
"""
Get the caption from the json data if possible.
:param json_data: The json data, a dict.
:return: The caption, or None if not found.
"""
caption_value = json_data.get("caption", None)
if isinstance(caption_value, str):
return caption_value.strip()
@staticmethod
def image_caption(json_data: dict) -> typing.Optional[ImageCaption]:
"""
Get the caption from the json data if possible.
:param json_data: The json data, a dict.
:return: The `ImageCaption`, or None if not found.
"""
image_value = JSONResolver.get_image_value(json_data)
caption_value = JSONResolver.get_caption_value(json_data)
if image_value:
if caption_value:
return ImageCaption.resolve(caption_value)
return ImageCaption.from_file(image_value)
class DirectoryResolver(DataResolver):
def image_train_items(self, data_root: str) -> list[ImageTrainItem]:
"""
Create `ImageTrainItem` objects with metadata for hydration later.
Unzips all zip files in `data_root` and then recursively searches the
`data_root` for images and captions.
:param data_root: The root directory to recurse through
"""
DirectoryResolver.unzip_all(data_root)
image_paths = list(DirectoryResolver.recurse_data_root(data_root))
items = []
2023-01-23 00:58:25 -07:00
multipliers = {}
for pathname in tqdm.tqdm(image_paths):
2023-01-23 00:58:25 -07:00
current_dir = os.path.dirname(pathname)
if current_dir not in multipliers:
multiply_txt_path = os.path.join(current_dir, "multiply.txt")
if os.path.exists(multiply_txt_path):
try:
with open(multiply_txt_path, 'r') as f:
val = float(f.read().strip())
multipliers[current_dir] = val
logging.info(f" - multiply.txt in '{current_dir}' set to {val}")
2023-01-23 00:58:25 -07:00
except Exception as e:
logging.warning(f" * {Fore.LIGHTYELLOW_EX}Error trying to read multiply.txt for {current_dir}: {Style.RESET_ALL}{e}")
multipliers[current_dir] = 1.0
else:
multipliers[current_dir] = 1.0
caption = ImageCaption.resolve(pathname)
item = self.image_train_item(pathname, caption, multiplier=multipliers[current_dir])
items.append(item)
return items
@staticmethod
def unzip_all(path):
try:
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.zip'):
logging.info(f"Unzipping {file}")
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(path)
except Exception as e:
logging.error(f"Error unzipping files {e}")
@staticmethod
def recurse_data_root(recurse_root):
for f in os.listdir(recurse_root):
current = os.path.join(recurse_root, f)
if os.path.isfile(current):
ext = os.path.splitext(f)[1].lower()
if ext in ['.jpg', '.jpeg', '.png', '.bmp', '.webp', '.jfif']:
yield current
for d in os.listdir(recurse_root):
current = os.path.join(recurse_root, d)
if os.path.isdir(current):
2023-01-23 18:12:46 -07:00
yield from DirectoryResolver.recurse_data_root(current)
def strategy(data_root: str) -> typing.Type[DataResolver]:
"""
Determine the strategy to use for resolving the data.
:param data_root: The root directory or JSON file to resolve.
"""
if os.path.isfile(data_root) and data_root.endswith('.json'):
return JSONResolver
if os.path.isdir(data_root):
return DirectoryResolver
raise ValueError(f"data_root '{data_root}' is not a valid directory or JSON file.")
def resolve_root(path: str, args: argparse.Namespace) -> list[ImageTrainItem]:
"""
Resolve the training data from the root path.
:param path: The root path to resolve.
:param args: EveryDream configuration, an `argparse.Namespace` object.
"""
resolver = strategy(path)
return resolver(args).image_train_items(path)
def resolve(value: typing.Union[dict, str], args: argparse.Namespace) -> list[ImageTrainItem]:
"""
Resolve the training data from the value.
:param value: The value to resolve, either a dict, an array, or a string.
:param args: EveryDream configuration, an `argparse.Namespace` object.
"""
if isinstance(value, str):
return resolve_root(value, args)
if isinstance(value, dict):
resolver = value.get('resolver', None)
match resolver:
case 'directory' | 'json':
path = value.get('path', None)
return resolve_root(path, args)
case 'multi':
return resolve(value.get('resolvers', []), args)
case _:
raise ValueError(f"Cannot resolve training data for resolver value '{resolver}'")
if isinstance(value, list):
items = []
for item in value:
items += resolve(item, args)
return items