EveryDream2trainer/data/image_train_item.py

228 lines
8.6 KiB
Python
Raw Normal View History

2022-12-17 20:32:48 -07:00
"""
Copyright [2022] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import bisect
import logging
2022-12-17 20:32:48 -07:00
import math
import os
import random
import PIL
import numpy as np
from torchvision import transforms
2022-12-17 20:32:48 -07:00
_RANDOM_TRIM = 0.04
class ImageCaption:
"""
Represents the various parts of an image caption
"""
def __init__(self, main_prompt: str, tags: list[str], tag_weights: list[float], max_target_length: int, use_weights: bool):
"""
:param main_prompt: The part of the caption which should always be included
:param tags: list of tags to pick from to fill the caption
:param tag_weights: weights to indicate which tags are more desired and should be picked preferably
:param max_target_length: The desired maximum length of a generated caption
:param use_weights: if ture, weights are considered when shuffling tags
"""
self.__main_prompt = main_prompt
self.__tags = tags
self.__tag_weights = tag_weights
self.__max_target_length = max_target_length
self.__use_weights = use_weights
if use_weights and len(tags) > len(tag_weights):
self.__tag_weights.extend([1.0] * (len(tags) - len(tag_weights)))
if use_weights and len(tag_weights) > len(tags):
self.__tag_weights = tag_weights[:len(tags)]
def get_shuffled_caption(self, seed: int) -> str:
"""
returns the caption a string with a random selection of the tags in random order
:param seed used to initialize the randomizer
:return: generated caption string
"""
max_target_tag_length = self.__max_target_length - len(self.__main_prompt)
if self.__use_weights:
tags_caption = self.__get_weighted_shuffled_tags(seed, self.__tags, self.__tag_weights, max_target_tag_length)
else:
tags_caption = self.__get_shuffled_tags(seed, self.__tags)
return self.__main_prompt + ", " + tags_caption
def get_caption(self) -> str:
return self.__main_prompt + ", " + ", ".join(self.__tags)
@staticmethod
def __get_weighted_shuffled_tags(seed: int, tags: list[str], weights: list[float], max_target_tag_length: int) -> str:
picker = random.Random(seed)
tags_copy = tags.copy()
weights_copy = weights.copy()
caption = ""
while len(tags_copy) != 0 and len(caption) < max_target_tag_length:
cum_weights = []
weight_sum = 0.0
for weight in weights_copy:
weight_sum += weight
cum_weights.append(weight_sum)
point = picker.uniform(0, weight_sum)
pos = bisect.bisect_left(cum_weights, point)
weights_copy.pop(pos)
tag = tags_copy.pop(pos)
caption += ", " + tag
return caption
@staticmethod
def __get_shuffled_tags(seed: int, tags: list[str]) -> str:
random.Random(seed).shuffle(tags)
return ", ".join(tags)
class ImageTrainItem():
2022-12-17 20:32:48 -07:00
"""
image: PIL.Image
identifier: caption,
target_aspect: (width, height),
pathname: path to image file
flip_p: probability of flipping image (0.0 to 1.0)
"""
def __init__(self, image: PIL.Image, caption: ImageCaption, target_wh: list, pathname: str, flip_p=0.0):
2022-12-17 20:32:48 -07:00
self.caption = caption
self.target_wh = target_wh
self.pathname = pathname
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.cropped_img = None
self.runt_size = 0
2022-12-17 20:32:48 -07:00
if image is None:
self.image = []
else:
self.image = image
def hydrate(self, crop=False, save=False, crop_jitter=20):
"""
crop: hard center crop to 512x512
save: save the cropped image to disk, for manual inspection of resize/crop
crop_jitter: randomly shift cropp by N pixels when using multiple aspect ratios to improve training quality
"""
# print(self.pathname, self.image)
2022-12-20 01:30:42 -07:00
try:
# if not hasattr(self, 'image'):
2022-12-17 20:32:48 -07:00
self.image = PIL.Image.open(self.pathname).convert('RGB')
width, height = self.image.size
if crop:
2022-12-17 20:32:48 -07:00
cropped_img = self.__autocrop(self.image)
self.image = cropped_img.resize((512, 512), resample=PIL.Image.BICUBIC)
2022-12-17 20:32:48 -07:00
else:
width, height = self.image.size
jitter_amount = random.randint(0, crop_jitter)
2022-12-17 20:32:48 -07:00
if self.target_wh[0] == self.target_wh[1]:
if width > height:
left = random.randint(0, width - height)
self.image = self.image.crop((left, 0, height + left, height))
2022-12-17 20:32:48 -07:00
width = height
elif height > width:
top = random.randint(0, height - width)
self.image = self.image.crop((0, top, width, width + top))
2022-12-17 20:32:48 -07:00
height = width
elif width > self.target_wh[0]:
slice = min(int(self.target_wh[0] * _RANDOM_TRIM), width - self.target_wh[0])
2022-12-17 20:32:48 -07:00
slicew_ratio = random.random()
left = int(slice * slicew_ratio)
right = width - int(slice * (1 - slicew_ratio))
2022-12-17 20:32:48 -07:00
sliceh_ratio = random.random()
top = int(slice * sliceh_ratio)
bottom = height - int(slice * (1 - sliceh_ratio))
2022-12-17 20:32:48 -07:00
self.image = self.image.crop((left, top, right, bottom))
else:
image_aspect = width / height
2022-12-17 20:32:48 -07:00
target_aspect = self.target_wh[0] / self.target_wh[1]
if image_aspect > target_aspect:
new_width = int(height * target_aspect)
jitter_amount = max(min(jitter_amount, int(abs(width - new_width) / 2)), 0)
2022-12-17 20:32:48 -07:00
left = jitter_amount
right = left + new_width
self.image = self.image.crop((left, 0, right, height))
else:
new_height = int(width / target_aspect)
jitter_amount = max(min(jitter_amount, int(abs(height - new_height) / 2)), 0)
2022-12-17 20:32:48 -07:00
top = jitter_amount
bottom = top + new_height
self.image = self.image.crop((0, top, width, bottom))
self.image = self.image.resize(self.target_wh, resample=PIL.Image.BICUBIC)
self.image = self.flip(self.image)
2022-12-20 01:30:42 -07:00
except Exception as e:
logging.error(f"Fatal Error loading image: {self.pathname}:")
logging.error(e)
2022-12-20 01:30:42 -07:00
exit()
2022-12-17 20:32:48 -07:00
if type(self.image) is not np.ndarray:
if save:
2022-12-17 20:32:48 -07:00
base_name = os.path.basename(self.pathname)
if not os.path.exists("test/output"):
os.makedirs("test/output")
self.image.save(f"test/output/{base_name}")
2022-12-17 20:32:48 -07:00
self.image = np.array(self.image).astype(np.uint8)
# self.image = (self.image / 127.5 - 1.0).astype(np.float32)
# print(self.image.shape)
2022-12-17 20:32:48 -07:00
return self
@staticmethod
def __autocrop(image: PIL.Image, q=.404):
"""
crops image to a random square inside small axis using a truncated gaussian distribution across the long axis
"""
x, y = image.size
if x != y:
if (x > y):
rand_x = x - y
sigma = max(rand_x * q, 1)
2022-12-17 20:32:48 -07:00
else:
rand_y = y - x
sigma = max(rand_y * q, 1)
2022-12-17 20:32:48 -07:00
if (x > y):
2022-12-17 20:32:48 -07:00
x_crop_gauss = abs(random.gauss(0, sigma))
x_crop = min(x_crop_gauss, (x - y) / 2)
2022-12-17 20:32:48 -07:00
x_crop = math.trunc(x_crop)
y_crop = 0
else:
y_crop_gauss = abs(random.gauss(0, sigma))
x_crop = 0
y_crop = min(y_crop_gauss, (y - x) / 2)
2022-12-17 20:32:48 -07:00
y_crop = math.trunc(y_crop)
2022-12-17 20:32:48 -07:00
min_xy = min(x, y)
image = image.crop((x_crop, y_crop, x_crop + min_xy, y_crop + min_xy))
return image