Merge pull request #235 from damian0815/feat_negative_loss

add loss_scale.txt
This commit is contained in:
Victor Hall 2023-11-03 13:36:36 -04:00 committed by GitHub
commit 30b063dfec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 34 additions and 15 deletions

View File

@ -54,6 +54,7 @@ class ImageConfig:
cond_dropout: float = None
flip_p: float = None
shuffle_tags: bool = False
loss_scale: float = None
def merge(self, other):
if other is None:
@ -68,7 +69,8 @@ class ImageConfig:
cond_dropout=overlay(other.cond_dropout, self.cond_dropout),
flip_p=overlay(other.flip_p, self.flip_p),
shuffle_tags=overlay(other.shuffle_tags, self.shuffle_tags),
batch_id=overlay(other.batch_id, self.batch_id)
batch_id=overlay(other.batch_id, self.batch_id),
loss_scale=overlay(other.loss_scale, self.loss_scale)
)
@classmethod
@ -83,7 +85,8 @@ class ImageConfig:
cond_dropout=data.get("cond_dropout"),
flip_p=data.get("flip_p"),
shuffle_tags=data.get("shuffle_tags"),
batch_id=data.get("batch_id")
batch_id=data.get("batch_id"),
loss_scale=data.get("loss_scale")
)
# Alternatively parse from dedicated `caption` attribute
@ -170,6 +173,8 @@ class Dataset:
cfgs.append(ImageConfig.from_file(fileset['local.yml']))
if 'batch_id.txt' in fileset:
cfgs.append(ImageConfig(batch_id=read_text(fileset['batch_id.txt'])))
if 'loss_scale.txt' in fileset:
cfgs.append(ImageConfig(loss_scale=read_float(fileset['loss_scale.txt'])))
result = ImageConfig.fold(cfgs)
if 'shuffle_tags.txt' in fileset:
@ -264,7 +269,8 @@ class Dataset:
multiplier=config.multiply or 1.0,
cond_dropout=config.cond_dropout,
shuffle_tags=config.shuffle_tags,
batch_id=config.batch_id
batch_id=config.batch_id,
loss_scale=config.loss_scale
)
items.append(item)
except Exception as e:

View File

@ -118,6 +118,7 @@ class EveryDreamBatch(Dataset):
example["tokens"] = torch.tensor(example["tokens"])
example["runt_size"] = train_item["runt_size"]
example["loss_scale"] = train_item["loss_scale"]
return example
@ -134,6 +135,7 @@ class EveryDreamBatch(Dataset):
example["cond_dropout"] = image_train_tmp.cond_dropout
example["runt_size"] = image_train_tmp.runt_size
example["shuffle_tags"] = image_train_tmp.shuffle_tags
example["loss_scale"] = image_train_tmp.loss_scale
return example
@ -214,11 +216,14 @@ def collate_fn(batch):
images = torch.stack(images)
images = images.to(memory_format=torch.contiguous_format).float()
loss_scale = torch.tensor([example.get("loss_scale", 1) for example in batch])
ret = {
"tokens": torch.stack(tuple(tokens)),
"image": images,
"captions": captions,
"runt_size": runt_size,
"loss_scale": loss_scale
}
del batch
return ret

View File

@ -141,7 +141,8 @@ class ImageTrainItem:
multiplier: float=1.0,
cond_dropout=None,
shuffle_tags=False,
batch_id: str=None
batch_id: str=None,
loss_scale: float=None
):
self.caption = caption
self.aspects = aspects
@ -153,6 +154,7 @@ class ImageTrainItem:
self.cond_dropout = cond_dropout
self.shuffle_tags = shuffle_tags
self.batch_id = batch_id or DEFAULT_BATCH_ID
self.loss_scale = 1 if loss_scale is None else loss_scale
self.target_wh = None
self.image_size = None

View File

@ -901,7 +901,7 @@ def main(args):
assert len(train_batch) > 0, "train_batch is empty, check that your data_root is correct"
# actual prediction function - shared between train and validate
def get_model_prediction_and_target(image, tokens, zero_frequency_noise_ratio=0.0, return_loss=False):
def get_model_prediction_and_target(image, tokens, zero_frequency_noise_ratio=0.0, return_loss=False, loss_scale=None):
with torch.no_grad():
with autocast(enabled=args.amp):
pixel_values = image.to(memory_format=torch.contiguous_format).to(unet.device)
@ -947,10 +947,10 @@ def main(args):
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if return_loss:
if args.min_snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
if loss_scale is None:
loss_scale = torch.ones(model_pred.shape[0], dtype=torch.float)
else:
if args.min_snr_gamma is not None:
snr = compute_snr(timesteps, noise_scheduler)
mse_loss_weights = (
@ -960,8 +960,10 @@ def main(args):
/ snr
)
mse_loss_weights[snr == 0] = 1.0
loss_scale = loss_scale * mse_loss_weights
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * loss_scale.to(unet.device)
loss = loss.mean()
return model_pred, target, loss
@ -1133,13 +1135,17 @@ def main(args):
batch=batch,
ed_state=make_current_ed_state())
model_pred, target, loss = get_model_prediction_and_target(batch["image"], batch["tokens"], args.zero_frequency_noise_ratio, return_loss=True)
model_pred, target, loss = get_model_prediction_and_target(batch["image"],
batch["tokens"],
args.zero_frequency_noise_ratio,
return_loss=True,
loss_scale=batch["loss_scale"])
del target, model_pred
if batch["runt_size"] > 0:
loss_scale = (batch["runt_size"] / args.batch_size)**1.5 # further discount runts by **1.5
loss = loss * loss_scale
runt_loss_scale = (batch["runt_size"] / args.batch_size)**1.5 # further discount runts by **1.5
loss = loss * runt_loss_scale
ed_optimizer.step(loss, step, global_step)