refactor optimizer to split te and unet

This commit is contained in:
Victor Hall 2023-04-29 22:56:10 -04:00
parent f0449c64e7
commit 3639e36135
3 changed files with 315 additions and 173 deletions

View File

@ -1,17 +1,32 @@
{ {
"doc": { "doc": {
"unet": "unet config",
"text_encoder": "text encoder config, if properties are null copies from unet config",
"text_encoder_lr_scale": "if LR not set on text encoder, sets the Lr to a multiple of the Unet LR. for example, if unet `lr` is 2e-6 and `text_encoder_lr_scale` is 0.5, the text encoder's LR will be set to `1e-6`.",
"-----------------": "-----------------",
"optimizer": "adamw, adamw8bit, lion", "optimizer": "adamw, adamw8bit, lion",
"optimizer_desc": "'adamw' in standard 32bit, 'adamw8bit' is bitsandbytes, 'lion' is lucidrains", "optimizer_desc": "'adamw' in standard 32bit, 'adamw8bit' is bitsandbytes, 'lion' is lucidrains",
"lr": "learning rate, if null wil use CLI or main JSON config value", "lr": "learning rate, if null will use CLI or main JSON config value",
"lr_scheduler": "overrides global lr scheduler from main config",
"betas": "exponential decay rates for the moment estimates", "betas": "exponential decay rates for the moment estimates",
"epsilon": "value added to denominator for numerical stability, unused for lion", "epsilon": "value added to denominator for numerical stability, unused for lion",
"weight_decay": "weight decay (L2 penalty)", "weight_decay": "weight decay (L2 penalty)"
"text_encoder_lr_scale": "scale the text encoder LR relative to the Unet LR. for example, if `lr` is 2e-6 and `text_encoder_lr_scale` is 0.5, the text encoder's LR will be set to `1e-6`."
}, },
"text_encoder_lr_scale": 0.5,
"unet": {
"optimizer": "adamw8bit", "optimizer": "adamw8bit",
"lr": 1e-6, "lr": 1e-6,
"lr_scheduler": null,
"betas": [0.9, 0.999], "betas": [0.9, 0.999],
"epsilon": 1e-8, "epsilon": 1e-8,
"weight_decay": 0.010, "weight_decay": 0.010
"text_encoder_lr_scale": 0.50 },
"text_encoder": {
"optimizer": null,
"lr": null,
"lr_scheduler": null,
"betas": null,
"epsilon": null,
"weight_decay": null
}
} }

257
optimizer/optimizers.py Normal file
View File

@ -0,0 +1,257 @@
import logging
import itertools
import os
import torch
from torch.cuda.amp import autocast, GradScaler
from diffusers.optimization import get_scheduler
from colorama import Fore, Style
BETAS_DEFAULT = [0.9, 0.999]
EPSILON_DEFAULT = 1e-8
WEIGHT_DECAY_DEFAULT = 0.01
LR_DEFAULT = 1e-6
OPTIMIZER_TE_STATE_FILENAME = "optimizer_te.pt"
OPTIMIZER_UNET_STATE_FILENAME = "optimizer_unet.pt"
class EveryDreamOptimizer():
"""
Wrapper to manage optimizers
resume_ckpt_path: path to resume checkpoint, will load state files if they exist
optimizer_config: config for the optimizer
text_encoder: text encoder model
unet: unet model
"""
def __init__(self, args, optimizer_config, text_encoder_params, unet_params):
self.grad_accum = args.grad_accum
self.clip_grad_norm = args.clip_grad_norm
self.text_encoder_params = text_encoder_params
self.unet_params = unet_params
self.optimizer_te, self.optimizer_unet = self.create_optimizers(args, optimizer_config, text_encoder_params, unet_params)
self.lr_scheduler_te, self.lr_scheduler_unet = self.create_lr_schedulers(args, optimizer_config)
self.unet_config = optimizer_config.get("unet", {})
if args.lr is not None:
self.unet_config["lr"] = args.lr
self.te_config = optimizer_config.get("text_encoder", {})
if self.te_config.get("lr", None) is None:
self.te_config["lr"] = self.unet_config["lr"]
te_scale = self.optimizer_config.get("text_encoder_lr_scale", None)
if te_scale is not None:
self.te_config["lr"] = self.unet_config["lr"] * te_scale
optimizer_te_state_path = os.path.join(args.resume_ckpt, OPTIMIZER_TE_STATE_FILENAME)
optimizer_unet_state_path = os.path.join(args.resume_ckpt, OPTIMIZER_UNET_STATE_FILENAME)
if os.path.exists(optimizer_te_state_path):
logging.info(f"Loading text encoder optimizer state from {optimizer_te_state_path}")
self.load_optimizer_state(self.optimizer_te, optimizer_te_state_path)
if os.path.exists(optimizer_unet_state_path):
logging.info(f"Loading unet optimizer state from {optimizer_unet_state_path}")
self.load_optimizer_state(self.optimizer_unet, optimizer_unet_state_path)
self.scaler = GradScaler(
enabled=args.amp,
init_scale=2**17.5,
growth_factor=2,
backoff_factor=1.0/2,
growth_interval=25,
)
logging.info(f" Grad scaler enabled: {self.scaler.is_enabled()} (amp mode)")
def step(self, loss, step, global_step):
self.scaler.scale(loss).backward()
self.optimizer_te.step()
self.optimizer_unet.step()
if self.clip_grad_norm is not None:
if not args.disable_unet_training:
torch.nn.utils.clip_grad_norm_(parameters=self.unet_params, max_norm=self.clip_grad_norm)
if not args.disable_textenc_training:
torch.nn.utils.clip_grad_norm_(parameters=self.text_encoder_params, max_norm=self.clip_grad_norm)
if ((global_step + 1) % self.grad_accum == 0) or (step == epoch_len - 1):
self.scaler.step(self.optimizer_te)
self.scaler.step(self.optimizer_unet)
self.scaler.update()
self._zero_grad(set_to_none=True)
self.lr_scheduler.step()
self.optimizer_unet.step()
self.update_grad_scaler(global_step)
def _zero_grad(self, set_to_none=False):
self.optimizer_te.zero_grad(set_to_none=set_to_none)
self.optimizer_unet.zero_grad(set_to_none=set_to_none)
def get_scale(self):
return self.scaler.get_scale()
def get_unet_lr(self):
return self.optimizer_unet.param_groups[0]['lr']
def get_te_lr(self):
return self.optimizer_te.param_groups[0]['lr']
def save(self, ckpt_path: str):
"""
Saves the optimizer states to path
"""
self._save_optimizer(self.optimizer_te, os.path.join(ckpt_path, OPTIMIZER_TE_STATE_FILENAME))
self._save_optimizer(self.optimizer_unet, os.path.join(ckpt_path, OPTIMIZER_UNET_STATE_FILENAME))
def create_optimizers(self, args, global_optimizer_config, text_encoder, unet):
"""
creates optimizers from config and argsfor unet and text encoder
returns (optimizer_te, optimizer_unet)
"""
if args.disable_textenc_training:
optimizer_te = create_null_optimizer()
else:
optimizer_te = self.create_optimizer(global_optimizer_config.get("text_encoder"), text_encoder)
if args.disable_unet_training:
optimizer_unet = create_null_optimizer()
else:
optimizer_unet = self.create_optimizer(global_optimizer_config, unet)
return optimizer_te, optimizer_unet
def create_lr_schedulers(self, args, optimizer_config):
lr_warmup_steps = int(args.lr_decay_steps / 50) if args.lr_warmup_steps is None else args.lr_warmup_steps
lr_scheduler_type_te = optimizer_config.get("lr_scheduler", self.unet_config.lr_scheduler)
self.lr_scheduler_te = get_scheduler(
lr_scheduler_type_te,
optimizer=self.optimizer_te,
num_warmup_steps=lr_warmup_steps,
num_training_steps=args.lr_decay_steps,
)
self.lr_scheduler_unet = get_scheduler(
args.lr_scheduler,
optimizer=self.optimizer_unet,
num_warmup_steps=lr_warmup_steps,
num_training_steps=args.lr_decay_steps,
)
return self.lr_scheduler_te, self.lr_scheduler_unet
def update_grad_scaler(self, global_step):
if global_step == 500:
factor = 1.8
self.scaler.set_growth_factor(factor)
self.scaler.set_backoff_factor(1/factor)
self.scaler.set_growth_interval(50)
if global_step == 1000:
factor = 1.6
self.scaler.set_growth_factor(factor)
self.scaler.set_backoff_factor(1/factor)
self.scaler.set_growth_interval(50)
if global_step == 2000:
factor = 1.3
self.scaler.set_growth_factor(factor)
self.scaler.set_backoff_factor(1/factor)
self.scaler.set_growth_interval(100)
if global_step == 4000:
factor = 1.15
self.scaler.set_growth_factor(factor)
self.scaler.set_backoff_factor(1/factor)
self.scaler.set_growth_interval(100)
@staticmethod
def _save_optimizer(optimizer, path: str):
"""
Saves the optimizer state to specific path/filename
"""
torch.save(optimizer.state_dict(), path)
@staticmethod
def load_optimizer_state(optimizer: torch.optim.Optimizer, path: str):
"""
Loads the optimizer state to an Optimizer object
"""
optimizer.load_state_dict(torch.load(path))
@staticmethod
def create_optimizer(args, local_optimizer_config, parameters):
betas = BETAS_DEFAULT
epsilon = EPSILON_DEFAULT
weight_decay = WEIGHT_DECAY_DEFAULT
opt_class = None
optimizer = None
default_lr = 1e-6
curr_lr = args.lr
text_encoder_lr_scale = 1.0
if local_optimizer_config is not None:
betas = local_optimizer_config["betas"]
epsilon = local_optimizer_config["epsilon"]
weight_decay = local_optimizer_config["weight_decay"]
optimizer_name = local_optimizer_config["optimizer"]
curr_lr = local_optimizer_config.get("lr", curr_lr)
if args.lr is not None:
curr_lr = args.lr
logging.info(f"Overriding LR from optimizer config with main config/cli LR setting: {curr_lr}")
text_encoder_lr_scale = local_optimizer_config.get("text_encoder_lr_scale", text_encoder_lr_scale)
if text_encoder_lr_scale != 1.0:
logging.info(f" * Using text encoder LR scale {text_encoder_lr_scale}")
if curr_lr is None:
curr_lr = default_lr
logging.warning(f"No LR setting found, defaulting to {default_lr}")
curr_text_encoder_lr = curr_lr * text_encoder_lr_scale
if optimizer_name:
if optimizer_name == "lion":
from lion_pytorch import Lion
opt_class = Lion
optimizer = opt_class(
itertools.chain(parameters),
lr=curr_lr,
betas=(betas[0], betas[1]),
weight_decay=weight_decay,
)
elif optimizer_name in ["adamw"]:
opt_class = torch.optim.AdamW
else:
import bitsandbytes as bnb
opt_class = bnb.optim.AdamW8bit
if not optimizer:
optimizer = opt_class(
itertools.chain(parameters),
lr=curr_lr,
betas=(betas[0], betas[1]),
eps=epsilon,
weight_decay=weight_decay,
amsgrad=False,
)
if args.lr_decay_steps is None or args.lr_decay_steps < 1:
args.lr_decay_steps = int(epoch_len * args.max_epochs * 1.5)
lr_warmup_steps = int(args.lr_decay_steps / 50) if args.lr_warmup_steps is None else args.lr_warmup_steps
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps,
num_training_steps=args.lr_decay_steps,
)
log_optimizer(optimizer, betas, epsilon, weight_decay, curr_lr, curr_text_encoder_lr)
return optimizer
def create_null_optimizer():
return torch.optim.AdamW([torch.zeros(1)], lr=0)
def log_optimizer(optimizer: torch.optim.Optimizer, betas, epsilon, weight_decay, lr, model_name):
"""
logs the optimizer settings
"""
logging.info(f"{Fore.CYAN} * Optimizer {model_name}: {optimizer.__class__.__name__} *{Style.RESET_ALL}")
logging.info(f"{Fore.CYAN} lr: {lr}, betas: {betas}, epsilon: {epsilon}, weight_decay: {weight_decay} *{Style.RESET_ALL}")

196
train.py
View File

@ -29,7 +29,7 @@ import traceback
import shutil import shutil
import torch.nn.functional as F import torch.nn.functional as F
from torch.cuda.amp import autocast, GradScaler from torch.cuda.amp import autocast
from colorama import Fore, Style from colorama import Fore, Style
import numpy as np import numpy as np
@ -60,6 +60,7 @@ from utils.huggingface_downloader import try_download_model_from_hf
from utils.convert_diff_to_ckpt import convert as converter from utils.convert_diff_to_ckpt import convert as converter
from utils.isolate_rng import isolate_rng from utils.isolate_rng import isolate_rng
from utils.check_git import check_git from utils.check_git import check_git
from optimizer.optimizers import EveryDreamOptimizer
if torch.cuda.is_available(): if torch.cuda.is_available():
from utils.gpu import GPU from utils.gpu import GPU
@ -131,24 +132,17 @@ def setup_local_logger(args):
return datetimestamp return datetimestamp
def log_optimizer(optimizer: torch.optim.Optimizer, betas, epsilon, weight_decay, unet_lr, text_encoder_lr): # def save_optimizer(optimizer: torch.optim.Optimizer, path: str):
""" # """
logs the optimizer settings # Saves the optimizer state
""" # """
logging.info(f"{Fore.CYAN} * Optimizer: {optimizer.__class__.__name__} *{Style.RESET_ALL}") # torch.save(optimizer.state_dict(), path)
logging.info(f"{Fore.CYAN} unet lr: {unet_lr}, text encoder lr: {text_encoder_lr}, betas: {betas}, epsilon: {epsilon}, weight_decay: {weight_decay} *{Style.RESET_ALL}")
def save_optimizer(optimizer: torch.optim.Optimizer, path: str): # def load_optimizer(optimizer: torch.optim.Optimizer, path: str):
""" # """
Saves the optimizer state # Loads the optimizer state
""" # """
torch.save(optimizer.state_dict(), path) # optimizer.load_state_dict(torch.load(path))
def load_optimizer(optimizer: torch.optim.Optimizer, path: str):
"""
Loads the optimizer state
"""
optimizer.load_state_dict(torch.load(path))
def get_gpu_memory(nvsmi): def get_gpu_memory(nvsmi):
""" """
@ -284,28 +278,6 @@ def setup_args(args):
return args return args
def update_grad_scaler(scaler: GradScaler, global_step, epoch, step):
if global_step == 500:
factor = 1.8
scaler.set_growth_factor(factor)
scaler.set_backoff_factor(1/factor)
scaler.set_growth_interval(50)
if global_step == 1000:
factor = 1.6
scaler.set_growth_factor(factor)
scaler.set_backoff_factor(1/factor)
scaler.set_growth_interval(50)
if global_step == 2000:
factor = 1.3
scaler.set_growth_factor(factor)
scaler.set_backoff_factor(1/factor)
scaler.set_growth_interval(100)
if global_step == 4000:
factor = 1.15
scaler.set_growth_factor(factor)
scaler.set_backoff_factor(1/factor)
scaler.set_growth_interval(100)
def report_image_train_item_problems(log_folder: str, items: list[ImageTrainItem], batch_size) -> None: def report_image_train_item_problems(log_folder: str, items: list[ImageTrainItem], batch_size) -> None:
undersized_items = [item for item in items if item.is_undersized] undersized_items = [item for item in items if item.is_undersized]
@ -453,7 +425,6 @@ def main(args):
logging.info(f" * Saving yaml to {yaml_save_path}") logging.info(f" * Saving yaml to {yaml_save_path}")
shutil.copyfile(yaml_name, yaml_save_path) shutil.copyfile(yaml_name, yaml_save_path)
if save_optimizer_flag: if save_optimizer_flag:
optimizer_path = os.path.join(save_path, "optimizer.pt") optimizer_path = os.path.join(save_path, "optimizer.pt")
logging.info(f" Saving optimizer state to {save_path}") logging.info(f" Saving optimizer state to {save_path}")
@ -531,8 +502,6 @@ def main(args):
project=args.project_name, project=args.project_name,
config={"main_cfg": vars(args), "optimizer_cfg": optimizer_config}, config={"main_cfg": vars(args), "optimizer_cfg": optimizer_config},
name=args.run_name, name=args.run_name,
#sync_tensorboard=True, # broken?
#dir=log_folder, # only for save, just duplicates the TB log to /{log_folder}/wandb ...
) )
try: try:
if webbrowser.get(): if webbrowser.get():
@ -545,84 +514,6 @@ def main(args):
comment=args.run_name if args.run_name is not None else log_time, comment=args.run_name if args.run_name is not None else log_time,
) )
betas = [0.9, 0.999]
epsilon = 1e-8
weight_decay = 0.01
opt_class = None
optimizer = None
default_lr = 1e-6
curr_lr = args.lr
text_encoder_lr_scale = 1.0
if optimizer_config is not None:
betas = optimizer_config["betas"]
epsilon = optimizer_config["epsilon"]
weight_decay = optimizer_config["weight_decay"]
optimizer_name = optimizer_config["optimizer"]
curr_lr = optimizer_config.get("lr", curr_lr)
if args.lr is not None:
curr_lr = args.lr
logging.info(f"Overriding LR from optimizer config with main config/cli LR setting: {curr_lr}")
text_encoder_lr_scale = optimizer_config.get("text_encoder_lr_scale", text_encoder_lr_scale)
if text_encoder_lr_scale != 1.0:
logging.info(f" * Using text encoder LR scale {text_encoder_lr_scale}")
logging.info(f" * Loaded optimizer args from {optimizer_config_path} *")
if curr_lr is None:
curr_lr = default_lr
logging.warning(f"No LR setting found, defaulting to {default_lr}")
curr_text_encoder_lr = curr_lr * text_encoder_lr_scale
if args.disable_textenc_training:
logging.info(f"{Fore.CYAN} * NOT Training Text Encoder, quality reduced *{Style.RESET_ALL}")
params_to_train = itertools.chain(unet.parameters())
elif args.disable_unet_training:
logging.info(f"{Fore.CYAN} * Training Text Encoder Only *{Style.RESET_ALL}")
if text_encoder_lr_scale != 1:
logging.warning(f"{Fore.YELLOW} * Ignoring text_encoder_lr_scale {text_encoder_lr_scale} and using the "
f"Unet LR {curr_lr} for the text encoder instead *{Style.RESET_ALL}")
params_to_train = itertools.chain(text_encoder.parameters())
else:
logging.info(f"{Fore.CYAN} * Training Text and Unet *{Style.RESET_ALL}")
params_to_train = [{'params': unet.parameters()},
{'params': text_encoder.parameters(), 'lr': curr_text_encoder_lr}]
if optimizer_name:
if optimizer_name == "lion":
from lion_pytorch import Lion
opt_class = Lion
optimizer = opt_class(
itertools.chain(params_to_train),
lr=curr_lr,
betas=(betas[0], betas[1]),
weight_decay=weight_decay,
)
elif optimizer_name in ["adamw"]:
opt_class = torch.optim.AdamW
else:
import bitsandbytes as bnb
opt_class = bnb.optim.AdamW8bit
if not optimizer:
optimizer = opt_class(
itertools.chain(params_to_train),
lr=curr_lr,
betas=(betas[0], betas[1]),
eps=epsilon,
weight_decay=weight_decay,
amsgrad=False,
)
if optimizer_state_path is not None:
logging.info(f"Loading optimizer state from {optimizer_state_path}")
load_optimizer(optimizer, optimizer_state_path)
log_optimizer(optimizer, betas, epsilon, weight_decay, curr_lr, curr_text_encoder_lr)
image_train_items = resolve_image_train_items(args) image_train_items = resolve_image_train_items(args)
validator = None validator = None
@ -658,17 +549,7 @@ def main(args):
epoch_len = math.ceil(len(train_batch) / args.batch_size) epoch_len = math.ceil(len(train_batch) / args.batch_size)
if args.lr_decay_steps is None or args.lr_decay_steps < 1: ed_optimizer = EveryDreamOptimizer(args, optimizer_config, text_encoder.parameters(), unet.parameters())
args.lr_decay_steps = int(epoch_len * args.max_epochs * 1.5)
lr_warmup_steps = int(args.lr_decay_steps / 50) if args.lr_warmup_steps is None else args.lr_warmup_steps
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps,
num_training_steps=args.lr_decay_steps,
)
log_args(log_writer, args) log_args(log_writer, args)
@ -742,15 +623,6 @@ def main(args):
logging.info(f" {Fore.GREEN}batch_size: {Style.RESET_ALL}{Fore.LIGHTGREEN_EX}{args.batch_size}{Style.RESET_ALL}") logging.info(f" {Fore.GREEN}batch_size: {Style.RESET_ALL}{Fore.LIGHTGREEN_EX}{args.batch_size}{Style.RESET_ALL}")
logging.info(f" {Fore.GREEN}epoch_len: {Fore.LIGHTGREEN_EX}{epoch_len}{Style.RESET_ALL}") logging.info(f" {Fore.GREEN}epoch_len: {Fore.LIGHTGREEN_EX}{epoch_len}{Style.RESET_ALL}")
scaler = GradScaler(
enabled=args.amp,
init_scale=2**17.5,
growth_factor=2,
backoff_factor=1.0/2,
growth_interval=25,
)
logging.info(f" Grad scaler enabled: {scaler.is_enabled()} (amp mode)")
epoch_pbar = tqdm(range(args.max_epochs), position=0, leave=True, dynamic_ncols=True) epoch_pbar = tqdm(range(args.max_epochs), position=0, leave=True, dynamic_ncols=True)
epoch_pbar.set_description(f"{Fore.LIGHTCYAN_EX}Epochs{Style.RESET_ALL}") epoch_pbar.set_description(f"{Fore.LIGHTCYAN_EX}Epochs{Style.RESET_ALL}")
epoch_times = [] epoch_times = []
@ -868,20 +740,18 @@ def main(args):
loss_scale = batch["runt_size"] / args.batch_size loss_scale = batch["runt_size"] / args.batch_size
loss = loss * loss_scale loss = loss * loss_scale
scaler.scale(loss).backward() ed_optimizer.step(step, global_step)
if args.clip_grad_norm is not None: # if args.clip_grad_norm is not None:
if not args.disable_unet_training: # if not args.disable_unet_training:
torch.nn.utils.clip_grad_norm_(parameters=unet.parameters(), max_norm=args.clip_grad_norm) # torch.nn.utils.clip_grad_norm_(parameters=unet.parameters(), max_norm=args.clip_grad_norm)
if not args.disable_textenc_training: # if not args.disable_textenc_training:
torch.nn.utils.clip_grad_norm_(parameters=text_encoder.parameters(), max_norm=args.clip_grad_norm) # torch.nn.utils.clip_grad_norm_(parameters=text_encoder.parameters(), max_norm=args.clip_grad_norm)
if ((global_step + 1) % args.grad_accum == 0) or (step == epoch_len - 1): #if ((global_step + 1) % args.grad_accum == 0) or (step == epoch_len - 1):
scaler.step(optimizer) #ed_optimizers.step(step, global_step)
scaler.update() #scaler.update()
optimizer.zero_grad(set_to_none=True) #optimizer.zero_grad(set_to_none=True)
lr_scheduler.step()
loss_step = loss.detach().item() loss_step = loss.detach().item()
@ -895,23 +765,23 @@ def main(args):
loss_epoch.append(loss_step) loss_epoch.append(loss_step)
if (global_step + 1) % args.log_step == 0: if (global_step + 1) % args.log_step == 0:
curr_lr = lr_scheduler.get_last_lr()[0]
loss_local = sum(loss_log_step) / len(loss_log_step) loss_local = sum(loss_log_step) / len(loss_log_step)
lr_unet = ed_optimizer.get_unet_lr()
lr_textenc = ed_optimizer.get_textenc_lr()
loss_log_step = [] loss_log_step = []
logs = {"loss/log_step": loss_local, "lr": curr_lr, "img/s": images_per_sec}
if args.disable_textenc_training or args.disable_unet_training or text_encoder_lr_scale == 1: log_writer.add_scalar(tag="hyperparamater/lr unet", scalar_value=lr_unet, global_step=global_step)
log_writer.add_scalar(tag="hyperparamater/lr", scalar_value=curr_lr, global_step=global_step) log_writer.add_scalar(tag="hyperparamater/lr text encoder", scalar_value=lr_textenc, global_step=global_step)
else:
log_writer.add_scalar(tag="hyperparamater/lr unet", scalar_value=curr_lr, global_step=global_step)
curr_text_encoder_lr = lr_scheduler.get_last_lr()[1]
log_writer.add_scalar(tag="hyperparamater/lr text encoder", scalar_value=curr_text_encoder_lr, global_step=global_step)
log_writer.add_scalar(tag="loss/log_step", scalar_value=loss_local, global_step=global_step) log_writer.add_scalar(tag="loss/log_step", scalar_value=loss_local, global_step=global_step)
sum_img = sum(images_per_sec_log_step) sum_img = sum(images_per_sec_log_step)
avg = sum_img / len(images_per_sec_log_step) avg = sum_img / len(images_per_sec_log_step)
images_per_sec_log_step = [] images_per_sec_log_step = []
if args.amp: if args.amp:
log_writer.add_scalar(tag="hyperparamater/grad scale", scalar_value=scaler.get_scale(), global_step=global_step) log_writer.add_scalar(tag="hyperparamater/grad scale", scalar_value=ed_optimizer.get_scale(), global_step=global_step)
log_writer.add_scalar(tag="performance/images per second", scalar_value=avg, global_step=global_step) log_writer.add_scalar(tag="performance/images per second", scalar_value=avg, global_step=global_step)
logs = {"loss/log_step": loss_local, "lr_unet": lr_unet, "lr_te": lr_textenc, "img/s": images_per_sec}
append_epoch_log(global_step=global_step, epoch_pbar=epoch_pbar, gpu=gpu, log_writer=log_writer, **logs) append_epoch_log(global_step=global_step, epoch_pbar=epoch_pbar, gpu=gpu, log_writer=log_writer, **logs)
torch.cuda.empty_cache() torch.cuda.empty_cache()
@ -933,7 +803,7 @@ def main(args):
del batch del batch
global_step += 1 global_step += 1
update_grad_scaler(scaler, global_step, epoch, step) if args.amp else None #update_grad_scaler(scaler, global_step, epoch, step) if args.amp else None
# end of step # end of step
steps_pbar.close() steps_pbar.close()