diff --git a/doc/TRAINING.md b/doc/TRAINING.md index aece041..89df00b 100644 --- a/doc/TRAINING.md +++ b/doc/TRAINING.md @@ -41,7 +41,8 @@ Resuming from a checkpoint, 50 epochs, 6 batch size, 3e-6 learning rate, cosine --sample_steps 200 ^ --lr 3e-6 ^ --ckpt_every_n_minutes 10 ^ - --useadam8bit + --useadam8bit ^ + --ed1_mode Training from SD2 512 base model, 18 epochs, 4 batch size, 1.2e-6 learning rate, constant LR, generate samples evern 100 steps, 30 minute checkpoint interval, adam8bit, using imagesin the x:\mydata folder, training at resolution class of 640: diff --git a/train.py b/train.py index 166f254..96c75dc 100644 --- a/train.py +++ b/train.py @@ -46,13 +46,12 @@ from accelerate.utils import set_seed import wandb from torch.utils.tensorboard import SummaryWriter -from tqdm.auto import tqdm import keyboard from data.every_dream import EveryDreamBatch from utils.huggingface_downloader import try_download_model_from_hf -from utils.convert_diffusers_to_stable_diffusion import convert as converter +from utils.convert_diff_to_ckpt import convert as converter from utils.gpu import GPU @@ -281,7 +280,12 @@ def main(args): """ log_time = setup_local_logger(args) args = setup_args(args) - + + if args.notebook: + from tqdm.notebook import tqdm + else: + from tqdm.auto import tqdm + seed = args.seed if args.seed != -1 else random.randint(0, 2**30) set_seed(seed) gpu = GPU() @@ -295,7 +299,7 @@ def main(args): os.makedirs(log_folder) @torch.no_grad() - def __save_model(save_path, unet, text_encoder, tokenizer, scheduler, vae, save_ckpt_dir): + def __save_model(save_path, unet, text_encoder, tokenizer, scheduler, vae, save_ckpt_dir, save_full_precision=False): """ Save the model to disk """ @@ -320,9 +324,11 @@ def main(args): sd_ckpt_full = os.path.join(save_ckpt_dir, sd_ckpt_path) else: sd_ckpt_full = os.path.join(os.curdir, sd_ckpt_path) + + half = not save_full_precision logging.info(f" * Saving SD model to {sd_ckpt_full}") - converter(model_path=save_path, checkpoint_path=sd_ckpt_full, half=True) + converter(model_path=save_path, checkpoint_path=sd_ckpt_full, half=half) # optimizer_path = os.path.join(save_path, "optimizer.pt") # if self.save_optimizer_flag: @@ -585,7 +591,7 @@ def main(args): logging.error(f"{Fore.LIGHTRED_EX} CTRL-C received, attempting to save model to {interrupted_checkpoint_path}{Style.RESET_ALL}") logging.error(f"{Fore.LIGHTRED_EX} ************************************************************************{Style.RESET_ALL}") time.sleep(2) # give opportunity to ctrl-C again to cancel save - __save_model(interrupted_checkpoint_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir) + __save_model(interrupted_checkpoint_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, args.save_full_precision) exit(_SIGTERM_EXIT_CODE) signal.signal(signal.SIGINT, sigterm_handler) @@ -781,7 +787,7 @@ def main(args): append_epoch_log(global_step=global_step, epoch_pbar=epoch_pbar, gpu=gpu, log_writer=log_writer, **logs) torch.cuda.empty_cache() - if keyboard.is_pressed("ctrl+alt+page up") or ((global_step + 1) % args.sample_steps == 0): + if (not args.notebook and keyboard.is_pressed("ctrl+alt+page up")) or ((global_step + 1) % args.sample_steps == 0): pipe = __create_inference_pipe(unet=unet, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=sample_scheduler, vae=vae) pipe = pipe.to(device) @@ -803,12 +809,12 @@ def main(args): last_epoch_saved_time = time.time() logging.info(f"Saving model, {args.ckpt_every_n_minutes} mins at step {global_step}") save_path = os.path.join(f"{log_folder}/ckpts/{args.project_name}-ep{epoch:02}-gs{global_step:05}") - __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir) + __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, args.save_full_precision) if epoch > 0 and epoch % args.save_every_n_epochs == 0 and step == 1 and epoch < args.max_epochs - 1: logging.info(f" Saving model, {args.save_every_n_epochs} epochs at step {global_step}") save_path = os.path.join(f"{log_folder}/ckpts/{args.project_name}-ep{epoch:02}-gs{global_step:05}") - __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir) + __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, args.save_full_precision) del batch global_step += 1 @@ -829,7 +835,7 @@ def main(args): # end of training save_path = os.path.join(f"{log_folder}/ckpts/last-{args.project_name}-ep{epoch:02}-gs{global_step:05}") - __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir) + __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, args.save_full_precision) total_elapsed_time = time.time() - training_start_time logging.info(f"{Fore.CYAN}Training complete{Style.RESET_ALL}") @@ -839,7 +845,7 @@ def main(args): except Exception as ex: logging.error(f"{Fore.LIGHTYELLOW_EX}Something went wrong, attempting to save model{Style.RESET_ALL}") save_path = os.path.join(f"{log_folder}/ckpts/errored-{args.project_name}-ep{epoch:02}-gs{global_step:05}") - __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir) + __save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, args.save_full_precision) raise ex logging.info(f"{Fore.LIGHTWHITE_EX} ***************************{Style.RESET_ALL}") @@ -854,6 +860,12 @@ def update_old_args(t_args): if not hasattr(t_args, "shuffle_tags"): print(f" Config json is missing 'shuffle_tags'") t_args.__dict__["shuffle_tags"] = False + if not hasattr(t_args, "save_full_precision"): + print(f" Config json is missing 'save_full_precision'") + t_args.__dict__["save_full_precision"] = False + if not hasattr(t_args, "notebook"): + print(f" Config json is missing 'notebook'") + t_args.__dict__["notebook"] = False if __name__ == "__main__": supported_resolutions = [256, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152] @@ -909,6 +921,8 @@ if __name__ == "__main__": argparser.add_argument("--useadam8bit", action="store_true", default=False, help="Use AdamW 8-Bit optimizer, recommended!") argparser.add_argument("--wandb", action="store_true", default=False, help="enable wandb logging instead of tensorboard, requires env var WANDB_API_KEY") argparser.add_argument("--write_schedule", action="store_true", default=False, help="write schedule of images and their batches to file (def: False)") + argparser.add_argument("--save_full_precision", action="store_true", default=False, help="save ckpts at full FP32") + argparser.add_argument("--notebook", action="store_true", default=False, help="disable keypresses and uses tqdm.notebook for jupyter notebook (def: False)") args = argparser.parse_args() diff --git a/utils/convert_diff_to_ckpt.py b/utils/convert_diff_to_ckpt.py new file mode 100644 index 0000000..5df3d3f --- /dev/null +++ b/utils/convert_diff_to_ckpt.py @@ -0,0 +1,321 @@ +# from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py +# modified to be callable + +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# Modifications for EveryDream Copyright 2022 Victor C Hall +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. +# *Only* converts the UNet, VAE, and Text Encoder. +# Does not convert optimizer state or any other thing. + +import os.path as osp +import re + +import torch + + +# =================# +# UNet Conversion # +# =================# + +unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), +] + +unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), +] + +unet_conversion_map_layer = [] +# hardcoded number of downblocks and resnets/attentions... +# would need smarter logic for other networks. +for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3*i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + +hf_mid_atn_prefix = "mid_block.attentions.0." +sd_mid_atn_prefix = "middle_block.1." +unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + +for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2*j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + +def convert_unet_state_dict(unet_state_dict): + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + + +# ================# +# VAE Conversion # +# ================# + +vae_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("nin_shortcut", "conv_shortcut"), + ("norm_out", "conv_norm_out"), + ("mid.attn_1.", "mid_block.attentions.0."), +] + +for i in range(4): + # down_blocks have two resnets + for j in range(2): + hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." + sd_down_prefix = f"encoder.down.{i}.block.{j}." + vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) + + if i < 3: + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." + sd_downsample_prefix = f"down.{i}.downsample." + vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) + + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"up.{3-i}.upsample." + vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) + + # up_blocks have three resnets + # also, up blocks in hf are numbered in reverse from sd + for j in range(3): + hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." + sd_up_prefix = f"decoder.up.{3-i}.block.{j}." + vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) + +# this part accounts for mid blocks in both the encoder and the decoder +for i in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{i}." + sd_mid_res_prefix = f"mid.block_{i+1}." + vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + +vae_conversion_map_attn = [ + # (stable-diffusion, HF Diffusers) + ("norm.", "group_norm."), + ("q.", "query."), + ("k.", "key."), + ("v.", "value."), + ("proj_out.", "proj_attn."), +] + + +def reshape_weight_for_sd(w): + # convert HF linear weights to SD conv2d weights + return w.reshape(*w.shape, 1, 1) + + +def convert_vae_state_dict(vae_state_dict): + mapping = {k: k for k in vae_state_dict.keys()} + for k, v in mapping.items(): + for sd_part, hf_part in vae_conversion_map: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + if "attentions" in k: + for sd_part, hf_part in vae_conversion_map_attn: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} + weights_to_convert = ["q", "k", "v", "proj_out"] + for k, v in new_state_dict.items(): + for weight_name in weights_to_convert: + if f"mid.attn_1.{weight_name}.weight" in k: + #print(f"Reshaping {k} for SD format") + new_state_dict[k] = reshape_weight_for_sd(v) + return new_state_dict + + +# =========================# +# Text Encoder Conversion # +# =========================# + + +textenc_conversion_lst = [ + # (stable-diffusion, HF Diffusers) + ("resblocks.", "text_model.encoder.layers."), + ("ln_1", "layer_norm1"), + ("ln_2", "layer_norm2"), + (".c_fc.", ".fc1."), + (".c_proj.", ".fc2."), + (".attn", ".self_attn"), + ("ln_final.", "transformer.text_model.final_layer_norm."), + ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), + ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), +] +protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} +textenc_pattern = re.compile("|".join(protected.keys())) + +# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp +code2idx = {"q": 0, "k": 1, "v": 2} + + +def convert_text_enc_state_dict_v20(text_enc_dict): + new_state_dict = {} + capture_qkv_weight = {} + capture_qkv_bias = {} + for k, v in text_enc_dict.items(): + if ( + k.endswith(".self_attn.q_proj.weight") + or k.endswith(".self_attn.k_proj.weight") + or k.endswith(".self_attn.v_proj.weight") + ): + k_pre = k[: -len(".q_proj.weight")] + k_code = k[-len("q_proj.weight")] + if k_pre not in capture_qkv_weight: + capture_qkv_weight[k_pre] = [None, None, None] + capture_qkv_weight[k_pre][code2idx[k_code]] = v + continue + + if ( + k.endswith(".self_attn.q_proj.bias") + or k.endswith(".self_attn.k_proj.bias") + or k.endswith(".self_attn.v_proj.bias") + ): + k_pre = k[: -len(".q_proj.bias")] + k_code = k[-len("q_proj.bias")] + if k_pre not in capture_qkv_bias: + capture_qkv_bias[k_pre] = [None, None, None] + capture_qkv_bias[k_pre][code2idx[k_code]] = v + continue + + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) + new_state_dict[relabelled_key] = v + + for k_pre, tensors in capture_qkv_weight.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) + + for k_pre, tensors in capture_qkv_bias.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) + + return new_state_dict + +def convert_text_enc_state_dict(text_enc_dict): + return text_enc_dict + + +def convert(model_path: str, checkpoint_path: str, half: bool): + + assert model_path is not None, "Must provide a model path!" + + assert checkpoint_path is not None, "Must provide a checkpoint path!" + + unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") + vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") + text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") + + # Convert the UNet model + unet_state_dict = torch.load(unet_path, map_location="cpu") + unet_state_dict = convert_unet_state_dict(unet_state_dict) + unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} + + # Convert the VAE model + vae_state_dict = torch.load(vae_path, map_location="cpu") + vae_state_dict = convert_vae_state_dict(vae_state_dict) + vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} + + # Convert the text encoder model + text_enc_dict = torch.load(text_enc_path, map_location="cpu") + + # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper + is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict + + if is_v20_model: + # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm + text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} + text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict) + text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} + else: + text_enc_dict = convert_text_enc_state_dict(text_enc_dict) + text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} + + # Put together new checkpoint + state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} + if half: + state_dict = {k: v.half() for k, v in state_dict.items()} + state_dict = {"state_dict": state_dict} + torch.save(state_dict, checkpoint_path) + \ No newline at end of file diff --git a/utils/convert_diffusers_to_stable_diffusion.py b/utils/convert_diffusers_to_stable_diffusion.py index 98af90d..2ebcf82 100644 --- a/utils/convert_diffusers_to_stable_diffusion.py +++ b/utils/convert_diffusers_to_stable_diffusion.py @@ -19,10 +19,11 @@ # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. # *Only* converts the UNet, VAE, and Text Encoder. -# Does not convert optimizer state or any other thing. - +# Does not convert optimizer state or any other thing. + import argparse import os.path as osp +import re import torch @@ -198,7 +199,7 @@ def convert_vae_state_dict(vae_state_dict): for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: - #print(f"Reshaping {k} for SD format") + print(f"Reshaping {k} for SD format") new_state_dict[k] = reshape_weight_for_sd(v) return new_state_dict @@ -206,21 +207,95 @@ def convert_vae_state_dict(vae_state_dict): # =========================# # Text Encoder Conversion # # =========================# -# pretty much a no-op +textenc_conversion_lst = [ + # (stable-diffusion, HF Diffusers) + ("resblocks.", "text_model.encoder.layers."), + ("ln_1", "layer_norm1"), + ("ln_2", "layer_norm2"), + (".c_fc.", ".fc1."), + (".c_proj.", ".fc2."), + (".attn", ".self_attn"), + ("ln_final.", "transformer.text_model.final_layer_norm."), + ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), + ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), +] +protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} +textenc_pattern = re.compile("|".join(protected.keys())) + +# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp +code2idx = {"q": 0, "k": 1, "v": 2} + + +def convert_text_enc_state_dict_v20(text_enc_dict): + new_state_dict = {} + capture_qkv_weight = {} + capture_qkv_bias = {} + for k, v in text_enc_dict.items(): + if ( + k.endswith(".self_attn.q_proj.weight") + or k.endswith(".self_attn.k_proj.weight") + or k.endswith(".self_attn.v_proj.weight") + ): + k_pre = k[: -len(".q_proj.weight")] + k_code = k[-len("q_proj.weight")] + if k_pre not in capture_qkv_weight: + capture_qkv_weight[k_pre] = [None, None, None] + capture_qkv_weight[k_pre][code2idx[k_code]] = v + continue + + if ( + k.endswith(".self_attn.q_proj.bias") + or k.endswith(".self_attn.k_proj.bias") + or k.endswith(".self_attn.v_proj.bias") + ): + k_pre = k[: -len(".q_proj.bias")] + k_code = k[-len("q_proj.bias")] + if k_pre not in capture_qkv_bias: + capture_qkv_bias[k_pre] = [None, None, None] + capture_qkv_bias[k_pre][code2idx[k_code]] = v + continue + + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) + new_state_dict[relabelled_key] = v + + for k_pre, tensors in capture_qkv_weight.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) + + for k_pre, tensors in capture_qkv_bias.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) + + return new_state_dict + def convert_text_enc_state_dict(text_enc_dict): return text_enc_dict -def convert(model_path: str, checkpoint_path: str, half: bool): - - assert model_path is not None, "Must provide a model path!" - assert checkpoint_path is not None, "Must provide a checkpoint path!" +if __name__ == "__main__": + parser = argparse.ArgumentParser() - unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") - vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") - text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") + parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") + parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") + parser.add_argument("--half", action="store_true", help="Save weights in half precision.") + + args = parser.parse_args() + + assert args.model_path is not None, "Must provide a model path!" + + assert args.checkpoint_path is not None, "Must provide a checkpoint path!" + + + + unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") + vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") + text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") # Convert the UNet model unet_state_dict = torch.load(unet_path, map_location="cpu") @@ -234,23 +309,22 @@ def convert(model_path: str, checkpoint_path: str, half: bool): # Convert the text encoder model text_enc_dict = torch.load(text_enc_path, map_location="cpu") - text_enc_dict = convert_text_enc_state_dict(text_enc_dict) - text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} + + # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper + is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict + + if is_v20_model: + # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm + text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} + text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict) + text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} + else: + text_enc_dict = convert_text_enc_state_dict(text_enc_dict) + text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} - if half: + if args.half: state_dict = {k: v.half() for k, v in state_dict.items()} state_dict = {"state_dict": state_dict} - torch.save(state_dict, checkpoint_path) - print(" * Saved converted checkpoint to", checkpoint_path) - -# if __name__ == "__main__": -# parser = argparse.ArgumentParser() - -# parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") -# parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") -# parser.add_argument("--half", action="store_true", help="Save weights in half precision.") - -# args = parser.parse_args() -# __convert(args) \ No newline at end of file + torch.save(state_dict, args.checkpoint_path)