diff --git a/train.py b/train.py index 142e7e3..29553c4 100644 --- a/train.py +++ b/train.py @@ -711,6 +711,10 @@ def main(args): return model_pred, target + # Pre-train validation to establish a starting point on the loss graph + if validator: + validator.do_validation_if_appropriate(epoch=0, global_step=0, + get_model_prediction_and_target_callable=get_model_prediction_and_target) try: # # dummy batch to pin memory to avoid fragmentation in torch, uses square aspect which is maximum bytes size per aspects.py @@ -849,7 +853,7 @@ def main(args): log_writer.add_scalar(tag="loss/epoch", scalar_value=loss_local, global_step=global_step) if validator: - validator.do_validation_if_appropriate(epoch, global_step, get_model_prediction_and_target) + validator.do_validation_if_appropriate(epoch+1, global_step, get_model_prediction_and_target) gc.collect() # end of epoch diff --git a/utils/split_dataset.py b/utils/split_dataset.py index 93a1064..c16f235 100644 --- a/utils/split_dataset.py +++ b/utils/split_dataset.py @@ -8,16 +8,21 @@ from typing import Optional from tqdm.auto import tqdm IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp', '.webp', '.jfif'] - +CAPTION_EXTENSIONS = ['.txt', '.caption', '.yaml', '.yml'] def gather_captioned_images(root_dir: str) -> list[tuple[str,Optional[str]]]: for directory, _, filenames in os.walk(root_dir): image_filenames = [f for f in filenames if os.path.splitext(f)[1].lower() in IMAGE_EXTENSIONS] for image_filename in image_filenames: - caption_filename = os.path.splitext(image_filename)[0] + '.txt' - image_path = os.path.join(directory+image_filename) - caption_path = os.path.join(directory+caption_filename) - yield (image_path, caption_path if os.path.exists(caption_path) else None) + image_path = os.path.join(directory, image_filename) + image_path_without_extension = os.path.splitext(image_path)[0] + caption_path = None + for caption_extension in CAPTION_EXTENSIONS: + possible_caption_path = image_path_without_extension + caption_extension + if os.path.exists(possible_caption_path): + caption_path = possible_caption_path + break + yield image_path, caption_path def copy_captioned_image(image_caption_pair: tuple[str, Optional[str]], source_root: str, target_root: str): @@ -39,13 +44,13 @@ if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('source_root', type=str, help='Source root folder containing images') - parser.add_argument('--train_output_folder', type=str, required=True, help="Output folder for the 'train' dataset") - parser.add_argument('--val_output_folder', type=str, required=True, help="Output folder for the 'val' dataset") + parser.add_argument('--train_output_folder', type=str, required=False, help="Output folder for the 'train' dataset. If omitted, do not save the train split.") + parser.add_argument('--val_output_folder', type=str, required=True, help="Output folder for the 'val' dataset.") parser.add_argument('--split_proportion', type=float, required=True, help="Proportion of images to use for 'val' (a number between 0 and 1)") parser.add_argument('--seed', type=int, required=False, default=555, help='Random seed for shuffling') args = parser.parse_args() - images = gather_captioned_images(args.source_root) + images = list(gather_captioned_images(args.source_root)) print(f"Found {len(images)} captioned images in {args.source_root}") val_split_count = math.ceil(len(images) * args.split_proportion) if val_split_count == 0: @@ -59,7 +64,9 @@ if __name__ == '__main__': print(f"Copying 'val' set to {args.val_output_folder}...") for v in tqdm(val_split): copy_captioned_image(v, args.source_root, args.val_output_folder) - print(f"Copying 'train' set to {args.train_output_folder}...") - for v in tqdm(train_split): - copy_captioned_image(v, args.source_root, args.train_output_folder) + + if args.train_output_folder is not None: + print(f"Copying 'train' set to {args.train_output_folder}...") + for v in tqdm(train_split): + copy_captioned_image(v, args.source_root, args.train_output_folder) print("Done.") \ No newline at end of file