Merge branch 'attn' of https://github.com/victorchall/EveryDream2trainer into attn
This commit is contained in:
commit
8756eb9863
|
@ -0,0 +1,22 @@
|
|||
import json
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
||||
|
||||
text = "αβ, Γ γ, Δ δ, Ε ε, Ζ ζ, Η η, Θ θ, Ι ι, Κ κ, Λ λ, Μ μ, Ν ν, Ξ ξ, Ο ο, Π π, Ρ ρ, Σ σ/ς, Τ τ, Υ υ, Φ φ, Χ χ, Ψ ψ, Ω ω."
|
||||
|
||||
token_dict = json.load(open("SD15/tokenizer/vocab.json", "r"))
|
||||
# reverse key and value in token_dict because the token ids are value in vocab.json
|
||||
token_dict = {v: k for k, v in token_dict.items()}
|
||||
|
||||
|
||||
tokens = tokenizer(text, truncation=False, padding="max_length", return_tensors="pt").input_ids
|
||||
|
||||
tokens = tokens.tolist()[0]
|
||||
tokens = [t for t in tokens if t not in [49406, 49407]] #remove start/end/pad tokens
|
||||
tokens2 = [token_dict[t] for t in tokens]
|
||||
print(f"text: {text}")
|
||||
print(f"token ids:{tokens}")
|
||||
print(f"tokens: {tokens2}")
|
||||
print(f"length (special tokens removed, max 75): {len(tokens)}, over limit: {len(tokens) > 75}")
|
||||
|
|
@ -24,9 +24,6 @@ from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionMod
|
|||
from torch.cuda.amp import autocast
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
|
||||
# from diffusers.models import AttentionBlock
|
||||
|
||||
def __generate_sample(pipe: StableDiffusionPipeline, prompt: str, cfg: float, height: int, width: int, gen,
|
||||
steps: int = 30, batch_size: int = 1):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue