Squashed commit of the following:

commit 0f890f2d6bbccee225f738934f4c4450323f19a2
Merge: c008c40 003b089
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 14 11:47:40 2023 +0200

    Merge remote-tracking branch 'upstream/main' into feat_te_last_n_layers_unsquashed

commit c008c404f19ebc6b78085f42a4e39aeb2ba00d04
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 14 11:23:20 2023 +0200

    finalize TE layer freezing

commit 7377b10d59e32a6fea5d321a598ae4504e1a9f36
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu May 11 20:45:28 2023 +0200

    remove zero_lr method

commit 4af13ba816c2811d7b5bd6fbb81a32bca6747e99
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu May 11 20:05:01 2023 +0200

    Revert "rename parameters"

    This reverts commit aa33c61337599ab2d90b34aaf8c3d36fd4edf147.

commit aa33c61337599ab2d90b34aaf8c3d36fd4edf147
Author: Damian Stewart <d@damianstewart.com>
Date:   Tue May 9 00:28:00 2023 +0200

    rename parameters

commit 1da867e6fadb873da2571371a73b522406d76a18
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 22:28:29 2023 +0200

    remove silly check

commit 483cb2a635c3fe5a044edf4ea8de095bedc3f0ac
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 20:53:43 2023 +0200

    use 1e-10 not 0 as 'zero' lr

commit e5d230e6c765a7e25dc6381d09bd0a66a9a54ec2
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 20:51:51 2023 +0200

    add experimental 'zero_lr' freeze method

commit bcf24ee59a443c0ee71d622e65e1043b547f845e
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 17:32:11 2023 +0200

    fix layer selection bug

commit 7ee33eff8740e095f85042dcbb792e025b179c6c
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 17:25:25 2023 +0200

    put back the 'drop' method and make accessible

commit 76dfbf6dd6f43f3aa9a7f4629baa8e86573d9520
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 16:39:05 2023 +0200

    wip getting final_layer_norm to work

commit a19d43651a87525251106ed57238cd2cd1c3f3ff
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 16:15:53 2023 +0200

    work around a crash when freeze_final_layer_norm is True

commit c2a44eb25132941b92e2ecd0be3682ae3c6838c2
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 15:47:10 2023 +0200

    improve logging, add extra freezing controls

commit a31e64c4c0d12dfb6583dd6f22c8c09ba7840410
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 13:46:38 2023 +0200

    alternative method to freeze early TE layers

commit 095692fd4ea53707c012217898321860d8b9329f
Merge: 876072c 4c5ce81
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 11:52:51 2023 +0200

    Merge branch 'victorchall:main' into feat_te_last_n_layers

commit 876072c46394fde721a6026f7a6ef72ccb150ddb
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun May 7 01:41:50 2023 +0200

    implement last N layers training only for TE
This commit is contained in:
Damian Stewart 2023-05-14 11:49:11 +02:00 committed by Victor Hall
parent 4a2e0bebdd
commit a6610625eb
3 changed files with 67 additions and 12 deletions

View File

@ -12,7 +12,11 @@
"lr_decay_steps": "number of steps to decay LR to zero for cosine, if null will use CLI or default a value based on max epochs",
"betas": "exponential decay rates for the moment estimates",
"epsilon": "value added to denominator for numerical stability, unused for lion",
"weight_decay": "weight decay (L2 penalty)"
"weight_decay": "weight decay (L2 penalty)",
"------------------": "-----------------",
"freeze_embeddings": "freeze the text embeddings",
"freeze_front_n_layers": "freeze the front N layers of the text encoder (you can pass eg -2 to leave only the last 2 layers unfrozen)",
"freeze_final_layer_norm": "freeze the final layer norm"
},
"base": {
"optimizer": "adamw8bit",
@ -33,5 +37,10 @@
"betas": null,
"epsilon": null,
"weight_decay": null
},
"text_encoder_freezing": {
"freeze_embeddings": false,
"freeze_front_n_layers": null,
"freeze_final_layer_norm": true
}
}

View File

@ -17,6 +17,8 @@ limitations under the License.
import logging
import itertools
import os
from itertools import chain
from typing import Generator, Any
import torch
from torch.cuda.amp import autocast, GradScaler
@ -40,12 +42,13 @@ class EveryDreamOptimizer():
text_encoder: text encoder model parameters
unet: unet model parameters
"""
def __init__(self, args, optimizer_config, text_encoder_params, unet_params, epoch_len):
def __init__(self, args, optimizer_config, text_encoder, unet, epoch_len):
del optimizer_config["doc"]
print(f"\n raw optimizer_config:")
pprint.pprint(optimizer_config)
self.epoch_len = epoch_len
self.te_config, self.base_config = self.get_final_optimizer_configs(args, optimizer_config)
self.te_freeze_config = optimizer_config.get("text_encoder_freezing", {})
print(f"final unet optimizer config:")
pprint.pprint(self.base_config)
print(f"final text encoder optimizer config:")
@ -53,11 +56,14 @@ class EveryDreamOptimizer():
self.grad_accum = args.grad_accum
self.clip_grad_norm = args.clip_grad_norm
self.text_encoder_params = text_encoder_params
self.unet_params = unet_params
self.text_encoder_params = self._apply_text_encoder_freeze(text_encoder)
self.unet_params = unet.parameters()
self.optimizers = []
self.optimizer_te, self.optimizer_unet = self.create_optimizers(args, text_encoder_params, unet_params)
self.optimizer_te, self.optimizer_unet = self.create_optimizers(args,
self.text_encoder_params,
self.unet_params)
self.optimizers.append(self.optimizer_te) if self.optimizer_te is not None else None
self.optimizers.append(self.optimizer_unet) if self.optimizer_unet is not None else None
@ -136,11 +142,11 @@ class EveryDreamOptimizer():
if args.disable_textenc_training:
optimizer_te = None
else:
optimizer_te = self._create_optimizer(args, self.te_config, text_encoder_params)
optimizer_te = self._create_optimizer("text encoder", args, self.te_config, text_encoder_params)
if args.disable_unet_training:
optimizer_unet = None
else:
optimizer_unet = self._create_optimizer(args, self.base_config, unet_params)
optimizer_unet = self._create_optimizer("unet", args, self.base_config, unet_params)
return optimizer_te, optimizer_unet
@ -248,7 +254,7 @@ class EveryDreamOptimizer():
logging.warning(f"{Fore.LIGHTYELLOW_EX}**Failed to load optimizer state from {path}, optimizer state will not be loaded, \n * Exception: {e}{Style.RESET_ALL}")
pass
def _create_optimizer(self, args, local_optimizer_config, parameters):
def _create_optimizer(self, label, args, local_optimizer_config, parameters):
betas = BETAS_DEFAULT
epsilon = EPSILON_DEFAULT
weight_decay = WEIGHT_DECAY_DEFAULT
@ -298,12 +304,48 @@ class EveryDreamOptimizer():
amsgrad=False,
)
log_optimizer(optimizer, betas, epsilon, weight_decay, curr_lr)
log_optimizer(label, optimizer, betas, epsilon, weight_decay, curr_lr)
return optimizer
def log_optimizer(optimizer: torch.optim.Optimizer, betas, epsilon, weight_decay, lr):
def _apply_text_encoder_freeze(self, text_encoder) -> chain[Any]:
parameters = itertools.chain([])
if self.te_freeze_config.get('freeze_embeddings', False):
# freeze embeddings
print(" ❄️ freezing embeddings")
else:
parameters = itertools.chain(parameters, text_encoder.text_model.embeddings.parameters())
freeze_front_n_layers = self.te_freeze_config.get('freeze_front_n_layers', None)
if freeze_front_n_layers is None:
parameters = itertools.chain(parameters, text_encoder.text_model.encoder.layers.parameters())
else:
# freeze the specified CLIP text encoder layers
layers = text_encoder.text_model.encoder.layers
print(f" ❄️ freezing text encoder layers 0-{len(layers[:freeze_front_n_layers])} of {len(layers)}")
parameters = itertools.chain(parameters, layers[freeze_front_n_layers:].parameters())
if self.te_freeze_config.get('freeze_final_layer_norm', False):
# instead of freezing the final layer norm parameters, we simply do not return them
print(" ❄️ freezing final layer norm")
else:
parameters = itertools.chain(parameters, text_encoder.text_model.final_layer_norm.parameters())
return parameters
def log_optimizer(label: str, optimizer: torch.optim.Optimizer, betas, epsilon, weight_decay, lr):
"""
logs the optimizer settings
"""
logging.info(f"{Fore.CYAN} * Optimizer: {optimizer.__class__.__name__} *{Style.RESET_ALL}")
all_params = sum([g['params'] for g in optimizer.param_groups], [])
frozen_parameter_count = len([p for p in all_params if not p.requires_grad])
total_parameter_count = len(all_params)
if frozen_parameter_count > 0:
param_info = f"({total_parameter_count} parameters, {frozen_parameter_count} frozen)"
else:
param_info = f"({total_parameter_count} parameters)"
logging.info(f"{Fore.CYAN} * {label} optimizer: {optimizer.__class__.__name__} {param_info} *{Style.RESET_ALL}")
logging.info(f"{Fore.CYAN} lr: {lr}, betas: {betas}, epsilon: {epsilon}, weight_decay: {weight_decay} *{Style.RESET_ALL}")

View File

@ -543,7 +543,11 @@ def main(args):
epoch_len = math.ceil(len(train_batch) / args.batch_size)
ed_optimizer = EveryDreamOptimizer(args, optimizer_config, text_encoder.parameters(), unet.parameters(), epoch_len)
ed_optimizer = EveryDreamOptimizer(args,
optimizer_config,
text_encoder,
unet,
epoch_len)
log_args(log_writer, args)