update caption docs and remove open flamingo script

This commit is contained in:
Victor Hall 2024-03-03 15:39:25 -05:00
parent 3256f9e33c
commit aca1867697
3 changed files with 15 additions and 231 deletions

View File

@ -1,209 +0,0 @@
"""
Copyright [2022-2023] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
from PIL import Image
import argparse
import requests
from transformers import Blip2Processor, Blip2ForConditionalGeneration, GitProcessor, GitForCausalLM, AutoModel, AutoProcessor
from huggingface_hub import hf_hub_download
from open_flamingo import create_model_and_transforms
import torch
from pynvml import *
import time
from colorama import Fore, Style
SUPPORTED_EXT = [".jpg", ".png", ".jpeg", ".bmp", ".jfif", ".webp"]
def get_gpu_memory_map():
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
nvmlShutdown()
return info.used/1024/1024
def remove_duplicates(string):
words = string.split(', ') # Split the string into individual words
unique_words = []
for word in words:
if word not in unique_words:
unique_words.append(word)
else:
break # Stop appending words once a duplicate is found
return ', '.join(unique_words)
def get_examples(example_root, image_processor):
examples = []
for root, dirs, files in os.walk(example_root):
for file in files:
ext = os.path.splitext(file)[-1].lower()
if ext in SUPPORTED_EXT:
#get .txt file of same base name
txt_file = os.path.splitext(file)[0] + ".txt"
with open(os.path.join(root, txt_file), 'r') as f:
caption = f.read()
image = Image.open(os.path.join(root, file))
vision_x = [image_processor(image).unsqueeze(0)]
#vision_x = torch.cat(vision_x, dim=0)
#vision_x = vision_x.unsqueeze(1).unsqueeze(0)
examples.append((caption, vision_x))
for x in examples:
print(f" ** Example: {x[0]}")
return examples
def get_dtype_for_cuda_device(device):
# check compute capability
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] >= 8:
dtype = torch.bfloat16
else:
dtype = torch.float16
return dtype
def main(args):
device = "cuda" if torch.cuda.is_available() and not args.force_cpu else "cpu"
dtype = get_dtype_for_cuda_device(device) if device == "cuda" else torch.float32
if args.prompt:
prompt = args.prompt
else:
prompt = "<image>: "
print(f" using prompt: {prompt}")
if "mpt7b" in args.model:
lang_encoder_path="anas-awadalla/mpt-7b"
tokenizer_path="anas-awadalla/mpt-7b"
elif "mpt1b" in args.model:
lang_encoder_path="anas-awadalla/mpt-1b-redpajama-200b"
tokenizer_path="anas-awadalla/mpt-1b-redpajama-200b"
model, image_processor, tokenizer = create_model_and_transforms(
clip_vision_encoder_path="ViT-L-14",
clip_vision_encoder_pretrained="openai",
lang_encoder_path=lang_encoder_path,
tokenizer_path=tokenizer_path,
cross_attn_every_n_layers=1,
)
tokenizer.padding_side = "left"
checkpoint_path = hf_hub_download(args.model, "checkpoint.pt")
model.load_state_dict(torch.load(checkpoint_path), strict=False)
print(f"GPU memory used, before loading model: {get_gpu_memory_map()} MB")
model.to(0, dtype=dtype)
print(f"GPU memory used, after loading model: {get_gpu_memory_map()} MB")
# examples give few shot learning for captioning the novel image
examples = get_examples(args.example_root, image_processor)
prompt = ""
output_prompt = "Output:"
per_image_prompt = "<image> " + output_prompt
for example in iter(examples):
prompt += f"{per_image_prompt}{example[0]}<|endofchunk|>"
prompt += per_image_prompt # prepare for novel example
prompt = prompt.replace("\n", "") # in case captions had newlines
print(f" \n** Final full prompt with example pairs: {prompt}")
# os.walk all files in args.data_root recursively
for root, dirs, files in os.walk(args.data_root):
for file in files:
#get file extension
ext = os.path.splitext(file)[1]
if ext.lower() in SUPPORTED_EXT:
start_time = time.time()
full_file_path = os.path.join(root, file)
image = Image.open(full_file_path)
vision_x = [vx[1][0] for vx in examples]
vision_x.append(image_processor(image).unsqueeze(0))
vision_x = torch.cat(vision_x, dim=0)
vision_x = vision_x.unsqueeze(1).unsqueeze(0)
vision_x = vision_x.to(device, dtype=dtype)
lang_x = tokenizer(
[prompt], # blank for image captioning
return_tensors="pt",
)
lang_x.to(device)
input_ids = lang_x["input_ids"].to(device)
with torch.cuda.amp.autocast(dtype=dtype), torch.no_grad():
generated_text = model.generate(
vision_x=vision_x,
lang_x=input_ids,
attention_mask=lang_x["attention_mask"],
max_new_tokens=args.max_new_tokens,
min_new_tokens=args.min_new_tokens,
num_beams=args.num_beams,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
)
del vision_x
del lang_x
# trim and clean
generated_text = tokenizer.decode(generated_text[0][len(input_ids[0]):], skip_special_tokens=True)
generated_text = generated_text.split(output_prompt)[0]
generated_text = remove_duplicates(generated_text)
exec_time = time.time() - start_time
print(f"* Caption: {generated_text}")
print(f" Time for last caption: {exec_time} sec. GPU memory used: {get_gpu_memory_map()} MB")
name = os.path.splitext(full_file_path)[0]
if not os.path.exists(name):
with open(f"{name}.txt", "w") as f:
f.write(generated_text)
print("Done!")
if __name__ == "__main__":
print(f"Available models:")
print(f" openflamingo/OpenFlamingo-9B-vitl-mpt7b (default)")
print(f" openflamingo/OpenFlamingo-3B-vitl-mpt1b")
print(f" openflamingo/OpenFlamingo-4B-vitl-rpj3b")
parser = argparse.ArgumentParser()
parser.add_argument("--data_root", type=str, default="input", help="Path to images")
parser.add_argument("--example_root", type=str, default="examples", help="Path to 2-3 precaptioned images to guide generation")
parser.add_argument("--model", type=str, default="openflamingo/OpenFlamingo-9B-vitl-mpt7b", help="Model name or path")
parser.add_argument("--force_cpu", action="store_true", default=False, help="force using CPU even if GPU is available")
parser.add_argument("--min_new_tokens", type=int, default=20, help="minimum number of tokens to generate")
parser.add_argument("--max_new_tokens", type=int, default=50, help="maximum number of tokens to generate")
parser.add_argument("--num_beams", type=int, default=8, help="number of beams, more is more accurate but slower")
parser.add_argument("--prompt", type=str, default="Output: ", help="prompt to use for generation, default is 'Output: '")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature for sampling, 1.0 is default")
parser.add_argument("--top_k", type=int, default=0, help="top_k sampling, 0 is default")
parser.add_argument("--top_p", type=float, default=1.0, help="top_p sampling, 1.0 is default")
parser.add_argument("--repetition_penalty", type=float, default=1.0, help="repetition penalty, 1.0 is default")
parser.add_argument("--length_penalty", type=float, default=1.0, help="length penalty, 1.0 is default")
args = parser.parse_args()
print(f"** OPEN-FLAMINGO ** Captioning files in: {args.data_root}")
print(f"** Using model: {args.model}")
main(args)

View File

@ -1,34 +1,27 @@
# Captioning tools
## Open-Flamingo
## CogVLM
#### Note: Open-Flamingo currently only works on Torch 2.0.1. If you want to use it, you will have to backdate your torch installation, which will break features in the trainer. I recommend making a separate environment for Open Flamingo captioning instead. You can run through normal install, then `pip install open-flamingo` in the separate envirment to back date torch and make that install open-flamingo only.
[CogVLM](https://github.com/THUDM/CogVLM) is, so far, the best model for generating synthetic captions. The script for Cog is enhanced, so read the [CogVLM README](CAPTION_COG.md) for more information.
`python caption_fl.py --data_root input --min_new_tokens 20 --max_new_tokens 30 --num_beams 3 --model "openflamingo/OpenFlamingo-9B-vitl-mpt7b"`
## Kosmos-2
This script uses two example image/caption pairs located in the `/example` folder to prime the system to caption, then captions the images in the input folder. It will save a `.txt` file of the same base filename with the caption in the same folder.
Microsoft's [Kosmos-2](https://huggingface.co/microsoft/kosmos-2-patch14-224) is significantly lighter weight than Cog, using <5GB of VRAM and generating captions in under 1/21 second on a RTX 3090.
This script currently requires an AMPERE or newer GPU due to using bfloat16.
It has the capability to output grounding bounding boxes.
**Trying out different example image/caption pairs will influence how the system captions the input images.** Adding more examples slows processing.
Run `python caption_kosmos2.py --help` to get a list of options.
Supported models:
### _Kosmos-2 grounding_
* `openflamingo/OpenFlamingo-3B-vitl-mpt1b` Small model, requires 8 GB VRAM a num_beams 3, or 12 GB at num_beams 16
* `openflamingo/OpenFlamingo-9B-vitl-mpt7b` Large model, requires 24 GB VRAM at num_beams 3, or 36.7gb at num_beams 32
Kosmos-2can generate bounding boxes for the "grounding" of the caption. This is useful for identifying specific objects in the image in 2D space, which can be useful in later piplines.
The small model with more beams (ex. 16) performs well with details and should not be immediately discounted.
It's worth reading the documentation [here](https://huggingface.co/microsoft/kosmos-2-patch14-224) to understand the grounding output.
The larger model is more accurate with proper names (i.e. identifying well-known celebrities, objects, or locations) and seems to exhibit a larger vocabulary.
`--save_entities` outputs a '.ent' file with bounding box information. The entities identified will be based on what caption is produced.
Primary params:
`--phrase_mode` This modifies how the model is called, wrapping phrases in \<phrase> tags. This also interprets your prompt as a CSV, wrapping each item in a phrase tag. You might use it with `--prompt "dog,cat,tree"` for instance. *This is not a gaurantee your phrases will be found and output into the grounding output file.*
* `--num_beams 3` increasing uses more VRAM and runs slower, may improve detail, but can increase hallicunations
* `--min_new_tokens 20` and `--max_new_tokens 35` control the length of the caption
`--save_entities_only` This will not attempt to write the caption into the .txt file at all. **This is recommended with `--phrase_mode`**. Using this option forces `--save_entities`.
Other settings:
* `--force_cpu` forces to use CPU even if a CUDA device is present
* `--temperature 1.0` relates to randomness used for next token chosen
* `--repetition_penalty 1.0` penalizes repeating tokens/words, can adjust up if you see repeated terms
* `--length_penalty 1.0` penalizes longer captions
There is a trivial/dumb UI for viewing the grounding in the scripts folder. Launch it with `python scripts/grounding_ui.py` and it will open a window allowing you to select a directory, and it will display the images and bounding boxes.

View File

@ -120,7 +120,7 @@ I would recommend not setting any of these and leave the default values until yo
`--no_repeat_ngram_size 3` prevents the same n-gram (successive token sequence) from being repeated in the output. Can help prevent the model from repeating itself.
`--bad_words "foo,bar"` Attempts to prevent the model from using these words in the output caption. Comma-delimited.
`--bad_words "foo,bar"` Attempts to prevent the model from using these words in the output caption. Comma-delimited. Very useful, consider trying `"depicts,poses,posing,showcases,appears,suggests"` to get more concise phrasing in captions. This is not a guarantee, due to [different tokenizations](https://github.com/huggingface/transformers/issues/17504) being possible for a given bad_word.
`--force_word "photograph,Spain"` Attempts to force the model to include the words in the output caption. Comma-delimited.
@ -128,7 +128,7 @@ I would recommend not setting any of these and leave the default values until yo
`--max_new_tokens 120` Truncates output after n tokens. May cut off captions abruptly.
`--no_repeat_ngram_size 3` prevents the same n-gram from being repeated in the output. Default is 0, which means no n-gram is prevented from repeating. Setting this to 2 or 3 can help prevent the model from repeating itself.
`--no_repeat_ngram_size 3` prevents the same n-gram (sequence of size n-tokens) from being repeated in the output. Default is 0, which means no n-gram is prevented from repeating. Setting this to 2 or 3 can help prevent the model from repeating itself.
`--min_new_tokens 5` Force the model to produce at least n tokens.