From d96b9cc56e91354779b30e063b765e5b9eba0833 Mon Sep 17 00:00:00 2001 From: Victor Hall Date: Fri, 31 May 2024 13:48:20 -0400 Subject: [PATCH] Update TRAINING.md update docs --- doc/TRAINING.md | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) diff --git a/doc/TRAINING.md b/doc/TRAINING.md index 27dbc8d..93a2a64 100644 --- a/doc/TRAINING.md +++ b/doc/TRAINING.md @@ -26,7 +26,7 @@ I recommend you copy one of the examples below and keep it in a text file for fu Training examples: -Resuming from a checkpoint, 50 epochs, 6 batch size, 3e-6 learning rate, constant scheduler, generate samples evern 200 steps, 10 minute checkpoint interval, adam8bit, and using the default "input" folder for training data: +Resuming from a checkpoint, 50 epochs, 6 batch size, 3e-6 learning rate, constant scheduler, generate samples evern 200 steps, 10 minute checkpoint interval, and using the default "input" folder for training data: python train.py --resume_ckpt "sd_v1-5_vae" ^ --max_epochs 50 ^ @@ -36,10 +36,9 @@ Resuming from a checkpoint, 50 epochs, 6 batch size, 3e-6 learning rate, constan --batch_size 6 ^ --sample_steps 200 ^ --lr 3e-6 ^ - --ckpt_every_n_minutes 10 ^ - --useadam8bit + --ckpt_every_n_minutes 10 -Training from SD2 512 base model, 18 epochs, 4 batch size, 1.2e-6 learning rate, constant LR, generate samples evern 100 steps, 30 minute checkpoint interval, adam8bit, using imagesin the x:\mydata folder, training at resolution class of 640: +Training from SD2 512 base model, 18 epochs, 4 batch size, 1.2e-6 learning rate, constant LR, generate samples evern 100 steps, 30 minute checkpoint interval, using imagesin the x:\mydata folder, training at resolution class of 640: python train.py --resume_ckpt "512-base-ema" ^ --data_root "x:\mydata" ^ @@ -51,10 +50,9 @@ Training from SD2 512 base model, 18 epochs, 4 batch size, 1.2e-6 learning rate, --lr 1.2e-6 ^ --resolution 640 ^ --clip_grad_norm 1 ^ - --ckpt_every_n_minutes 30 ^ - --useadam8bit + --ckpt_every_n_minutes 30 -Training from the "SD21" model on the "jets" dataset on another drive, for 50 epochs, 6 batch size, 1.5e-6 learning rate, cosine scheduler that will decay in 1500 steps, generate samples evern 100 steps, save a checkpoint every 20 epochs, and use AdamW 8bit optimizer: +Training from the "SD21" model on the "jets" dataset on another drive, for 50 epochs, 6 batch size, 1.5e-6 learning rate, cosine scheduler that will decay in 1500 steps, generate samples evern 100 steps, save a checkpoint every 20 epochs: python train.py --resume_ckpt "SD21" ^ --data_root "R:\everydream-trainer\training_samples\mega\gt\objects\jets" ^ @@ -66,8 +64,7 @@ Training from the "SD21" model on the "jets" dataset on another drive, for 50 ep --batch_size 6 ^ --sample_steps 100 ^ --lr 1.5e-6 ^ - --save_every_n_epochs 20 ^ - --useadam8bit + --save_every_n_epochs 20 Copy paste the above to your command line and press enter. Make sure the last line does not have ^ but all other lines do. If you want you can put the command all on one line and not use the ^ carats instead.