# copy/pasted from pytorch lightning # https://github.com/Lightning-AI/lightning/blob/0d52f4577310b5a1624bed4d23d49e37fb05af9e/src/lightning_fabric/utilities/seed.py # and # https://github.com/Lightning-AI/lightning/blob/98f7696d1681974d34fad59c03b4b58d9524ed13/src/pytorch_lightning/utilities/seed.py # Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from typing import Generator, Dict, Any import torch import numpy as np from random import getstate as python_get_rng_state from random import setstate as python_set_rng_state def _collect_rng_states(include_cuda: bool = True) -> Dict[str, Any]: """Collect the global random state of :mod:`torch`, :mod:`torch.cuda`, :mod:`numpy` and Python.""" states = { "torch": torch.get_rng_state(), "numpy": np.random.get_state(), "python": python_get_rng_state(), } if include_cuda: try: states["torch.cuda"] = torch.cuda.get_rng_state_all() except RuntimeError: # CUDA initialization failure. pass return states def _set_rng_states(rng_state_dict: Dict[str, Any]) -> None: """Set the global random state of :mod:`torch`, :mod:`torch.cuda`, :mod:`numpy` and Python in the current process.""" torch.set_rng_state(rng_state_dict["torch"]) # torch.cuda rng_state is only included since v1.8. if "torch.cuda" in rng_state_dict: torch.cuda.set_rng_state_all(rng_state_dict["torch.cuda"]) np.random.set_state(rng_state_dict["numpy"]) version, state, gauss = rng_state_dict["python"] python_set_rng_state((version, tuple(state), gauss)) @contextmanager def isolate_rng(include_cuda: bool = True) -> Generator[None, None, None]: """A context manager that resets the global random state on exit to what it was before entering. It supports isolating the states for PyTorch, Numpy, and Python built-in random number generators. Args: include_cuda: Whether to allow this function to also control the `torch.cuda` random number generator. Set this to ``False`` when using the function in a forked process where CUDA re-initialization is prohibited. Example: >>> import torch >>> torch.manual_seed(1) # doctest: +ELLIPSIS >>> with isolate_rng(): ... [torch.rand(1) for _ in range(3)] [tensor([0.7576]), tensor([0.2793]), tensor([0.4031])] >>> torch.rand(1) tensor([0.7576]) """ states = _collect_rng_states(include_cuda) yield _set_rng_states(states)