""" Copyright [2022] Victor C Hall Licensed under the GNU Affero General Public License; You may not use this code except in compliance with the License. You may obtain a copy of the License at https://www.gnu.org/licenses/agpl-3.0.en.html Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import os import time from colorama import Fore, Style from tensorboard import SummaryWriter import wandb class LogWrapper(): """ singleton for logging """ def __init__(self, args, wandb=False): self.logdir = args.logdir self.wandb = wandb if wandb: wandb.init(project=args.project_name, sync_tensorboard=True) else: self.log_writer = SummaryWriter(log_dir=args.logdir, flush_secs=5, comment="EveryDream2FineTunes", ) start_time = time.strftime("%Y%m%d-%H%M") log_file = os.path.join(args.logdir, f"log-{args.project_name}-{start_time}.txt") self.logger = logging.getLogger(__name__) console = logging.StreamHandler() self.logger.addHandler(console) file = logging.FileHandler(log_file, mode="a", encoding=None, delay=False) self.logger.addHandler(file) def add_image(): """ log_writer.add_image(tag=f"sample_{i}", img_tensor=tfimage, global_step=gs) else: log_writer.add_image(tag=f"sample_{i}_{clean_prompt[:100]}", img_tensor=tfimage, global_step=gs) """ pass def add_scalar(self, tag: str, img_tensor: float, global_step: int): if self.wandb: wandb.log({tag: img_tensor}, step=global_step) else: self.log_writer.add_image(tag, img_tensor, global_step) def append_epoch_log(self, global_step: int, epoch_pbar, gpu, log_writer, **logs): """ updates the vram usage for the epoch """ gpu_used_mem, gpu_total_mem = gpu.get_gpu_memory() self.add_scalar("performance/vram", gpu_used_mem, global_step) epoch_mem_color = Style.RESET_ALL if gpu_used_mem > 0.93 * gpu_total_mem: epoch_mem_color = Fore.LIGHTRED_EX elif gpu_used_mem > 0.85 * gpu_total_mem: epoch_mem_color = Fore.LIGHTYELLOW_EX elif gpu_used_mem > 0.7 * gpu_total_mem: epoch_mem_color = Fore.LIGHTGREEN_EX elif gpu_used_mem < 0.5 * gpu_total_mem: epoch_mem_color = Fore.LIGHTBLUE_EX if logs is not None: epoch_pbar.set_postfix(**logs, vram=f"{epoch_mem_color}{gpu_used_mem}/{gpu_total_mem} MB{Style.RESET_ALL} gs:{global_step}")