""" Copyright [2022] Victor C Hall Licensed under the GNU Affero General Public License; You may not use this code except in compliance with the License. You may obtain a copy of the License at https://www.gnu.org/licenses/agpl-3.0.en.html Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from PIL import Image import random from data.image_train_item import ImageTrainItem import data.aspects as aspects class DataLoaderMultiAspect(): """ Data loader for multi-aspect-ratio training and bucketing data_root: root folder of training data batch_size: number of images per batch flip_p: probability of flipping image horizontally (i.e. 0-0.5) """ def __init__(self, data_root, seed=555, debug_level=0, batch_size=1, flip_p=0.0, resolution=512): self.image_paths = [] self.debug_level = debug_level self.flip_p = flip_p self.aspects = aspects.get_aspect_buckets(resolution=resolution, square_only=False) print(f"* DLMA resolution {resolution}, buckets: {self.aspects}") print(" Preloading images...") self.__recurse_data_root(self=self, recurse_root=data_root) random.Random(seed).shuffle(self.image_paths) prepared_train_data = self.__prescan_images(self.image_paths, flip_p) # ImageTrainItem[] self.image_caption_pairs = self.__bucketize_images(prepared_train_data, batch_size=batch_size, debug_level=debug_level) #if debug_level > 0: print(f" * DLMA Example: {self.image_caption_pairs[0]} images") def get_all_images(self): return self.image_caption_pairs @staticmethod def __read_caption_from_file(file_path, fallback_caption): caption = fallback_caption try: with open(file_path, encoding='utf-8', mode='r') as caption_file: caption = caption_file.read() except: print(f" *** Error reading {file_path} to get caption, falling back to filename") caption = fallback_caption pass return caption def __prescan_images(self, image_paths: list, flip_p=0.0): """ Create ImageTrainItem objects with metadata for hydration later """ decorated_image_train_items = [] for pathname in image_paths: caption_from_filename = os.path.splitext(os.path.basename(pathname))[0].split("_")[0] txt_file_path = os.path.splitext(pathname)[0] + ".txt" caption_file_path = os.path.splitext(pathname)[0] + ".caption" if os.path.exists(txt_file_path): caption = self.__read_caption_from_file(txt_file_path, caption_from_filename) elif os.path.exists(caption_file_path): caption = self.__read_caption_from_file(caption_file_path, caption_from_filename) else: caption = caption_from_filename image = Image.open(pathname) width, height = image.size image_aspect = width / height target_wh = min(self.aspects, key=lambda aspects:abs(aspects[0]/aspects[1] - image_aspect)) image_train_item = ImageTrainItem(image=None, caption=caption, target_wh=target_wh, pathname=pathname, flip_p=flip_p) decorated_image_train_items.append(image_train_item) return decorated_image_train_items @staticmethod def __bucketize_images(prepared_train_data: list, batch_size=1, debug_level=0): """ Put images into buckets based on aspect ratio with batch_size*n images per bucket, discards remainder """ # TODO: this is not terribly efficient but at least linear time buckets = {} for image_caption_pair in prepared_train_data: target_wh = image_caption_pair.target_wh if (target_wh[0],target_wh[1]) not in buckets: buckets[(target_wh[0],target_wh[1])] = [] buckets[(target_wh[0],target_wh[1])].append(image_caption_pair) print(f" ** Number of buckets used: {len(buckets)}") if len(buckets) > 1: for bucket in buckets: truncate_count = len(buckets[bucket]) % batch_size current_bucket_size = len(buckets[bucket]) buckets[bucket] = buckets[bucket][:current_bucket_size - truncate_count] if debug_level > 0: print(f" ** Bucket {bucket} with {current_bucket_size} will drop {truncate_count} images due to batch size {batch_size}") # flatten the buckets image_caption_pairs = [] for bucket in buckets: image_caption_pairs.extend(buckets[bucket]) return image_caption_pairs @staticmethod def __recurse_data_root(self, recurse_root): multiply = 1 multiply_path = os.path.join(recurse_root, "multiply.txt") if os.path.exists(multiply_path): try: with open(multiply_path, encoding='utf-8', mode='r') as f: multiply = int(float(f.read().strip())) print(f" * DLMA multiply.txt in {recurse_root} set to {multiply}") except: print(f" *** Error reading multiply.txt in {recurse_root}, defaulting to 1") pass for f in os.listdir(recurse_root): current = os.path.join(recurse_root, f) if os.path.isfile(current): ext = os.path.splitext(f)[1] if ext in ['.jpg', '.jpeg', '.png', '.bmp', '.webp', '.jfif']: # add image multiplyrepeats number of times for _ in range(multiply): self.image_paths.append(current) sub_dirs = [] for d in os.listdir(recurse_root): current = os.path.join(recurse_root, d) if os.path.isdir(current): sub_dirs.append(current) for dir in sub_dirs: self.__recurse_data_root(self=self, recurse_root=dir)