""" Copyright [2022] Victor C Hall Licensed under the GNU Affero General Public License; You may not use this code except in compliance with the License. You may obtain a copy of the License at https://www.gnu.org/licenses/agpl-3.0.en.html Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import bisect import logging import math import os import random import typing import yaml import PIL import PIL.Image as Image import PIL.ImageOps as ImageOps import numpy as np from torchvision import transforms _RANDOM_TRIM = 0.04 OptionalImageCaption = typing.Optional['ImageCaption'] class ImageCaption: """ Represents the various parts of an image caption """ def __init__(self, main_prompt: str, rating: float, tags: list[str], tag_weights: list[float], max_target_length: int, use_weights: bool): """ :param main_prompt: The part of the caption which should always be included :param tags: list of tags to pick from to fill the caption :param tag_weights: weights to indicate which tags are more desired and should be picked preferably :param max_target_length: The desired maximum length of a generated caption :param use_weights: if ture, weights are considered when shuffling tags """ self.__main_prompt = main_prompt self.__rating = rating self.__tags = tags self.__tag_weights = tag_weights self.__max_target_length = max_target_length self.__use_weights = use_weights if use_weights and len(tags) > len(tag_weights): self.__tag_weights.extend([1.0] * (len(tags) - len(tag_weights))) if use_weights and len(tag_weights) > len(tags): self.__tag_weights = tag_weights[:len(tags)] def rating(self) -> float: return self.__rating def get_shuffled_caption(self, seed: int) -> str: """ returns the caption a string with a random selection of the tags in random order :param seed used to initialize the randomizer :return: generated caption string """ if self.__tags: max_target_tag_length = self.__max_target_length - len(self.__main_prompt) if self.__use_weights: tags_caption = self.__get_weighted_shuffled_tags(seed, self.__tags, self.__tag_weights, max_target_tag_length) else: tags_caption = self.__get_shuffled_tags(seed, self.__tags) return self.__main_prompt + ", " + tags_caption return self.__main_prompt def get_caption(self) -> str: if self.__tags: return self.__main_prompt + ", " + ", ".join(self.__tags) return self.__main_prompt @staticmethod def __get_weighted_shuffled_tags(seed: int, tags: list[str], weights: list[float], max_target_tag_length: int) -> str: picker = random.Random(seed) tags_copy = tags.copy() weights_copy = weights.copy() caption = "" while len(tags_copy) != 0 and len(caption) < max_target_tag_length: cum_weights = [] weight_sum = 0.0 for weight in weights_copy: weight_sum += weight cum_weights.append(weight_sum) point = picker.uniform(0, weight_sum) pos = bisect.bisect_left(cum_weights, point) weights_copy.pop(pos) tag = tags_copy.pop(pos) if caption: caption += ", " caption += tag return caption @staticmethod def __get_shuffled_tags(seed: int, tags: list[str]) -> str: random.Random(seed).shuffle(tags) return ", ".join(tags) class ImageTrainItem: """ image: PIL.Image identifier: caption, target_aspect: (width, height), pathname: path to image file flip_p: probability of flipping image (0.0 to 1.0) rating: the relative rating of the images. The rating is measured in comparison to the other images. """ def __init__(self, image: PIL.Image, caption: ImageCaption, aspects: list[float], pathname: str, flip_p=0.0, multiplier: float=1.0, cond_dropout=None): self.caption = caption self.aspects = aspects self.pathname = pathname self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.cropped_img = None self.runt_size = 0 self.multiplier = multiplier self.cond_dropout = cond_dropout self.image_size = None if image is None or len(image) == 0: self.image = [] else: self.image = image self.image_size = image.size self.target_size = None self.is_undersized = False self.error = None self.__compute_target_width_height() def hydrate(self, crop=False, save=False, crop_jitter=20): """ crop: hard center crop to 512x512 save: save the cropped image to disk, for manual inspection of resize/crop crop_jitter: randomly shift cropp by N pixels when using multiple aspect ratios to improve training quality """ # print(self.pathname, self.image) try: # if not hasattr(self, 'image'): self.image = PIL.Image.open(self.pathname).convert('RGB') self.image = ImageOps.exif_transpose(self.image) width, height = self.image.size if crop: cropped_img = self.__autocrop(self.image) self.image = cropped_img.resize((512, 512), resample=PIL.Image.BICUBIC) else: width, height = self.image.size jitter_amount = random.randint(0, crop_jitter) if self.target_wh[0] == self.target_wh[1]: if width > height: left = random.randint(0, width - height) self.image = self.image.crop((left, 0, height + left, height)) width = height elif height > width: top = random.randint(0, height - width) self.image = self.image.crop((0, top, width, width + top)) height = width elif width > self.target_wh[0]: slice = min(int(self.target_wh[0] * _RANDOM_TRIM), width - self.target_wh[0]) slicew_ratio = random.random() left = int(slice * slicew_ratio) right = width - int(slice * (1 - slicew_ratio)) sliceh_ratio = random.random() top = int(slice * sliceh_ratio) bottom = height - int(slice * (1 - sliceh_ratio)) self.image = self.image.crop((left, top, right, bottom)) else: image_aspect = width / height target_aspect = self.target_wh[0] / self.target_wh[1] if image_aspect > target_aspect: new_width = int(height * target_aspect) jitter_amount = max(min(jitter_amount, int(abs(width - new_width) / 2)), 0) left = jitter_amount right = left + new_width self.image = self.image.crop((left, 0, right, height)) else: new_height = int(width / target_aspect) jitter_amount = max(min(jitter_amount, int(abs(height - new_height) / 2)), 0) top = jitter_amount bottom = top + new_height self.image = self.image.crop((0, top, width, bottom)) self.image = self.image.resize(self.target_wh, resample=PIL.Image.BICUBIC) self.image = self.flip(self.image) except Exception as e: logging.error(f"Fatal Error loading image: {self.pathname}:") logging.error(e) exit() if type(self.image) is not np.ndarray: if save: base_name = os.path.basename(self.pathname) if not os.path.exists("test/output"): os.makedirs("test/output") self.image.save(f"test/output/{base_name}") self.image = np.array(self.image).astype(np.uint8) # self.image = (self.image / 127.5 - 1.0).astype(np.float32) # print(self.image.shape) return self def __compute_target_width_height(self): self.target_wh = None try: with Image.open(self.pathname) as image: width, height = image.size image_aspect = width / height target_wh = min(self.aspects, key=lambda aspects:abs(aspects[0]/aspects[1] - image_aspect)) self.is_undersized = (width * height) < (target_wh[0] * target_wh[1]) self.target_wh = target_wh except Exception as e: self.error = e @staticmethod def __autocrop(image: PIL.Image, q=.404): """ crops image to a random square inside small axis using a truncated gaussian distribution across the long axis """ x, y = image.size if x != y: if (x > y): rand_x = x - y sigma = max(rand_x * q, 1) else: rand_y = y - x sigma = max(rand_y * q, 1) if (x > y): x_crop_gauss = abs(random.gauss(0, sigma)) x_crop = min(x_crop_gauss, (x - y) / 2) x_crop = math.trunc(x_crop) y_crop = 0 else: y_crop_gauss = abs(random.gauss(0, sigma)) x_crop = 0 y_crop = min(y_crop_gauss, (y - x) / 2) y_crop = math.trunc(y_crop) min_xy = min(x, y) image = image.crop((x_crop, y_crop, x_crop + min_xy, y_crop + min_xy)) return image