import math import os import shutil from plugins.plugins import BasePlugin from train import save_model EVERY_N_EPOCHS = 1 # how often to save. integers >= 1 save at the end of every nth epoch. floats < 1 subdivide the epoch evenly (eg 0.33 = 3 subdivisions) class InterruptiblePlugin(BasePlugin): def __init__(self): print("Interruptible plugin instantiated") self.previous_save_path = None self.every_n_epochs = EVERY_N_EPOCHS def on_epoch_start(self, **kwargs): epoch = kwargs['epoch'] epoch_length = kwargs['epoch_length'] self.steps_to_save_this_epoch = self._get_save_step_indices(epoch, epoch_length) def on_step_end(self, **kwargs): local_step = kwargs['local_step'] if local_step in self.steps_to_save_this_epoch: global_step = kwargs['global_step'] epoch = kwargs['epoch'] project_name = kwargs['project_name'] log_folder = kwargs['log_folder'] ckpt_name = f"rolling-{project_name}-ep{epoch:02}-gs{global_step:05}" save_path = os.path.join(log_folder, "ckpts", ckpt_name) print(f"{type(self)} saving model to {save_path}") save_model(save_path, global_step=global_step, ed_state=kwargs['ed_state'], save_ckpt_dir=None, yaml_name=None, save_ckpt=False, save_full_precision=True, save_optimizer_flag=True) self._remove_previous() self.previous_save_path = save_path def on_training_end(self, **kwargs): self._remove_previous() def _remove_previous(self): if self.previous_save_path is not None: shutil.rmtree(self.previous_save_path, ignore_errors=True) self.previous_save_path = None def _get_save_step_indices(self, epoch, epoch_length_steps: int) -> list[int]: if self.every_n_epochs >= 1: if ((epoch+1) % self.every_n_epochs) == 0: # last step only return [epoch_length_steps-1] else: return [] else: # subdivide the epoch evenly, by rounding self.every_n_epochs to the nearest clean division of steps num_divisions = max(1, min(epoch_length_steps, round(1/self.every_n_epochs))) # validation happens after training: # if an epoch has eg 100 steps and num_divisions is 2, then validation should occur after steps 49 and 99 validate_every_n_steps = epoch_length_steps / num_divisions return [math.ceil((i+1)*validate_every_n_steps) - 1 for i in range(num_divisions)]