{ "doc": { "base": "base optimizer configuration for unet and text encoder", "text_encoder_overrides": "text encoder config overrides", "text_encoder_lr_scale": "if LR not set on text encoder, sets the Lr to a multiple of the Base LR. for example, if base `lr` is 2e-6 and `text_encoder_lr_scale` is 0.5, the text encoder's LR will be set to `1e-6`.", "-----------------": "-----------------", "optimizer": "adamw, adamw8bit, lion", "optimizer_desc": "'adamw' in standard 32bit, 'adamw8bit' is bitsandbytes, 'lion' is lucidrains", "lr": "learning rate, if null will use CLI or main JSON config value", "lr_scheduler": "'constant' or 'cosine'", "lr_warmup_steps": "number of steps to warmup LR to target LR, if null will use CLI or default a value based on max epochs", "lr_decay_steps": "number of steps to decay LR to zero for cosine, if null will use CLI or default a value based on max epochs", "betas": "exponential decay rates for the moment estimates", "epsilon": "value added to denominator for numerical stability, unused for lion", "weight_decay": "weight decay (L2 penalty)", "------------------": "-----------------", "unfreeze_last_n_layers": "if not null, freeze all parameters in the text encoder except for the last n layers and the final layer norm" }, "base": { "optimizer": "adamw8bit", "lr": 1e-6, "lr_scheduler": "constant", "lr_decay_steps": null, "lr_warmup_steps": null, "betas": [0.9, 0.999], "epsilon": 1e-8, "weight_decay": 0.010 }, "text_encoder_overrides": { "optimizer": null, "lr": null, "lr_scheduler": null, "lr_decay_steps": null, "lr_warmup_steps": null, "betas": null, "epsilon": null, "weight_decay": null }, "text_encoder_freezing": { "unfreeze_last_n_layers": null }, "apply_grad_scaler_step_tweaks": true }