""" Copyright [2022] Victor C Hall Licensed under the GNU Affero General Public License; You may not use this code except in compliance with the License. You may obtain a copy of the License at https://www.gnu.org/licenses/agpl-3.0.en.html Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import torch from torch.utils.data import Dataset from data.data_loader import DataLoaderMultiAspect from data.image_train_item import ImageTrainItem import random from torchvision import transforms from transformers import CLIPTokenizer import torch.nn.functional as F class EveryDreamBatch(Dataset): """ data_loader: `DataLoaderMultiAspect` object debug_level: 0=none, 1=print drops due to unfilled batches on aspect ratio buckets, 2=debug info per image, 3=save crops to disk for inspection conditional_dropout: probability of dropping the caption for a given image crop_jitter: number of pixels to jitter the crop by, only for non-square images seed: random seed """ def __init__(self, data_loader: DataLoaderMultiAspect, debug_level=0, conditional_dropout=0.02, crop_jitter=20, seed=555, tokenizer=None, retain_contrast=False, shuffle_tags=False, rated_dataset=False, rated_dataset_dropout_target=0.5, name='train' ): self.data_loader = data_loader self.batch_size = data_loader.batch_size self.debug_level = debug_level self.conditional_dropout = conditional_dropout self.crop_jitter = crop_jitter self.unloaded_to_idx = 0 self.tokenizer = tokenizer self.max_token_length = self.tokenizer.model_max_length self.retain_contrast = retain_contrast self.shuffle_tags = shuffle_tags self.seed = seed self.rated_dataset = rated_dataset self.rated_dataset_dropout_target = rated_dataset_dropout_target # First epoch always trains on all images self.image_train_items = [] self.__update_image_train_items(1.0) self.name = name num_images = len(self.image_train_items) logging.info(f" ** Trainer Set: {num_images / self.batch_size:.0f}, num_images: {num_images}, batch_size: {self.batch_size}") def get_random_split(self, split_proportion: float, remove_from_dataset: bool=False) -> list[ImageTrainItem]: items = self.data_loader.get_random_split(split_proportion, remove_from_dataset) self.__update_image_train_items(1.0) return items def shuffle(self, epoch_n: int, max_epochs: int): self.seed += 1 if self.rated_dataset: dropout_fraction = (max_epochs - (epoch_n * self.rated_dataset_dropout_target)) / max_epochs else: dropout_fraction = 1.0 self.__update_image_train_items(dropout_fraction) def __len__(self): return len(self.image_train_items) def __getitem__(self, i): example = {} train_item = self.__get_image_for_trainer(self.image_train_items[i], self.debug_level) if self.retain_contrast: std_dev = 1.0 mean = 0.0 else: std_dev = 0.5 mean = 0.5 image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([mean], [std_dev]), ] ) if self.shuffle_tags: example["caption"] = train_item["caption"].get_shuffled_caption(self.seed) else: example["caption"] = train_item["caption"].get_caption() example["image"] = image_transforms(train_item["image"]) if random.random() > self.conditional_dropout: example["tokens"] = self.tokenizer(example["caption"], truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, ).input_ids else: example["tokens"] = self.tokenizer(" ", truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, ).input_ids example["tokens"] = torch.tensor(example["tokens"]) example["runt_size"] = train_item["runt_size"] return example def __get_image_for_trainer(self, image_train_item: ImageTrainItem, debug_level=0): example = {} save = debug_level > 2 image_train_tmp = image_train_item.hydrate(crop=False, save=save, crop_jitter=self.crop_jitter) example["image"] = image_train_tmp.image example["caption"] = image_train_tmp.caption example["runt_size"] = image_train_tmp.runt_size return example def __update_image_train_items(self, dropout_fraction: float): self.image_train_items = self.data_loader.get_shuffled_image_buckets(dropout_fraction) def build_torch_dataloader(dataset, batch_size) -> torch.utils.data.DataLoader: dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn ) return dataloader def collate_fn(batch): """ Collates batches """ images = [example["image"] for example in batch] captions = [example["caption"] for example in batch] tokens = [example["tokens"] for example in batch] runt_size = batch[0]["runt_size"] images = torch.stack(images) images = images.to(memory_format=torch.contiguous_format).float() ret = { "tokens": torch.stack(tuple(tokens)), "image": images, "captions": captions, "runt_size": runt_size, } del batch return ret