Go to file
Victor Hall 2afea3bdb8 set highmem and t4 for colab 2023-07-03 15:37:29 -04:00
.devcontainer Split requirements between build and runtime 2023-04-01 00:29:10 +02:00
.github Update docker-publish.yml 2023-06-18 03:04:07 -04:00
cfgs update coco example cfg 2023-02-25 16:37:10 -05:00
data better check for null manual_data_root 2023-06-17 11:04:14 +02:00
doc Update TWEAKING.md 2023-07-03 14:57:54 -04:00
docker Update requirements-runtime.txt 2023-06-26 23:34:45 -04:00
examples flamingo 2023-06-29 18:12:52 -04:00
optimizer first crack at plugins 2023-06-27 20:53:48 -04:00
plugins flamingo 2023-06-29 18:12:52 -04:00
scripts early iter on txt2img script for testing on remote instances 2023-01-23 16:51:00 -05:00
test shuffle named batches while respecting and accounting for grad_accum 2023-06-07 18:07:37 +02:00
utils fix bug with empty samples.txt 2023-06-17 11:04:14 +02:00
.gitignore Add docker compose file 2023-05-28 12:42:57 -07:00
.pylintrc gitignore 2022-12-17 22:34:07 -05:00
CaptionFL.ipynb set highmem and t4 for colab 2023-07-03 15:37:29 -04:00
LICENSE update license for 2023 2023-01-27 13:59:02 -05:00
LICENSE_AGPL update license for 2023 2023-01-27 13:59:02 -05:00
README.md document flamingo caption script 2023-06-30 00:28:07 -04:00
Train_Colab.ipynb Update Train_Colab.ipynb 2023-06-27 15:02:47 -04:00
Train_JupyterLab.ipynb Update Train_JupyterLab.ipynb 2023-06-13 11:44:26 -04:00
activate_venv.bat hey look ed2 2022-12-17 22:32:48 -05:00
caption.py caption thing 2023-03-25 20:17:56 -04:00
caption_fl.py enable float16 for older cards, t4, etc 2023-07-03 15:24:58 -04:00
chain.bat update ed1 mode 2023-01-09 13:44:51 -05:00
chain0.json chaining and more lowers resolutions 2023-01-08 18:52:39 -05:00
chain1.json chaining and more lowers resolutions 2023-01-08 18:52:39 -05:00
chain2.json chaining and more lowers resolutions 2023-01-08 18:52:39 -05:00
docker-compose.yml Add docker compose file 2023-05-28 12:42:57 -07:00
optimizer.json Merge branch 'main' into fix_simplify_freezing_text_encoder_layers 2023-06-18 00:53:51 -04:00
optimizerSD21.json simplify freezing text encoder layers config 2023-06-17 18:54:06 +02:00
optimizer_dadapt.json dadapt stuff 2023-06-03 11:26:53 -04:00
requirements-test.txt test reqs 2023-05-08 18:25:37 -04:00
requirements.txt flamingo 2023-06-29 18:12:52 -04:00
sample_prompts.json Update sample_prompts.json 2023-02-27 19:57:08 -06:00
sample_prompts.txt hey look ed2 2022-12-17 22:32:48 -05:00
train.json check if your git commit is out of date 2023-04-29 18:15:25 -04:00
train.py fix default for plugins 2023-06-29 22:00:16 -04:00
trainSD21.json update SD2.1 default training settings 2023-05-16 13:57:05 -04:00
validation_default.json update docs for every_n_epochs 2023-05-07 12:05:49 +02:00
windows_setup.cmd flamingo 2023-06-29 18:12:52 -04:00

README.md

EveryDream Trainer 2.0

Welcome to v2.0 of EveryDream trainer! Now with more Diffusers, faster, and even more features!

For the most up to date news and community discussions, please join us on Discord!

Discord!

If you find this tool useful, please consider subscribing to the project on Patreon or a one-time donation on Ko-fi. Your donations keep this project alive as a free open source tool with ongoing enhancements.

Patreon or Kofi.

If you're coming from Dreambooth, please read this for an explanation of why EveryDream is not Dreambooth.

Requirements

Windows 10/11, Linux (Ubuntu 20.04+ recommended), or use the linux Docker container

Python 3.10.x

Nvidia GPU with 11GB VRAM or more (note: 1080 Ti and 2080 Ti may require compiling xformers yourself)

16GB system RAM recommended minimum

Single GPU is currently supported

32GB of system RAM recommended for 50k+ training images, but may get away with sufficient swap file and 16GB

Ampere or newer 24GB+ (3090/A5000/4090, etc) recommended for 10k+ images

...Or use any computer with a web browser and run on Vast/Colab. See Cloud section below.

Video tutorials

Basic setup and getting started

Covers install, setup of base models, startning training, basic tweaking, and looking at your logs

Multiaspect and crop jitter explainer

Behind the scenes look at how the trainer handles multiaspect and crop jitter

Companion tools repo

Make sure to check out the tools repo, it has a grab bag of scripts to help with your data curation prior to training. It has automatic bulk BLIP captioning for BLIP, script to web scrape based on Laion data files, script to rename generic pronouns to proper names or append artist tags to your captions, etc.

Cloud/Docker

Free tier Google Colab notebook

* RunPod / Vast Instructions

* Vast.ai Video Tutorial

Runpod Video Tutorial

Docker image link

Docs

Setup and installation

Download and setup base models

Data Preparation

Training - How to start training

Troubleshooting

Basic Tweaking - Important args to understand to get started

Advanced Tweaking and Advanced Optimizer Tweaking

Chaining training sessions - Modify training parameters by chaining training sessions together end to end

Shuffling Tags

Data Balancing - Includes my small treatise on model "preservation" with additional ground truth data

Logging

Validation - Use a validation split on your data to see when you are overfitting and tune hyperparameters

Captioning - (beta) tools to automate captioning

Contributing