Go to file
Victor Hall 630ac5e46a
Merge pull request #152 from qslug/yaml-tag-str
Always convert YAML tags to strings
2023-04-22 19:03:04 -04:00
.devcontainer Split requirements between build and runtime 2023-04-01 00:29:10 +02:00
.github unittest workflow fix maybe 2023-04-22 18:56:51 -04:00
cfgs update coco example cfg 2023-02-25 16:37:10 -05:00
data Merge pull request #152 from qslug/yaml-tag-str 2023-04-22 19:03:04 -04:00
doc github action for unit tests 2023-04-22 18:48:55 -04:00
docker add license label to container 2023-04-15 19:03:39 -04:00
scripts early iter on txt2img script for testing on remote instances 2023-01-23 16:51:00 -05:00
test Always convert YAML tags to strings 2023-04-23 00:36:32 +02:00
utils remove erroneous cast() 2023-04-15 01:52:36 +02:00
.gitignore support for saving the optimizer state 2023-04-13 22:31:22 -05:00
.pylintrc gitignore 2022-12-17 22:34:07 -05:00
LICENSE update license for 2023 2023-01-27 13:59:02 -05:00
LICENSE_AGPL update license for 2023 2023-01-27 13:59:02 -05:00
README.md add vast-runpod video links to main readme 2023-04-15 14:25:39 -04:00
Train_Colab.ipynb add compel to colab 2023-04-20 00:26:18 -04:00
Train_JupyterLab.ipynb Add lion lib and speed test 2023-04-14 00:59:26 +02:00
activate_venv.bat hey look ed2 2022-12-17 22:32:48 -05:00
caption.py caption thing 2023-03-25 20:17:56 -04:00
chain.bat update ed1 mode 2023-01-09 13:44:51 -05:00
chain0.json chaining and more lowers resolutions 2023-01-08 18:52:39 -05:00
chain1.json chaining and more lowers resolutions 2023-01-08 18:52:39 -05:00
chain2.json chaining and more lowers resolutions 2023-01-08 18:52:39 -05:00
optimizer.json added some resolutions, option for val-loss pos-neg, fix wandb 2023-03-25 20:09:06 -04:00
requirements-test.txt unittest workflow fix maybe 2023-04-22 18:56:51 -04:00
sample_prompts.json Update sample_prompts.json 2023-02-27 19:57:08 -06:00
sample_prompts.txt hey look ed2 2022-12-17 22:32:48 -05:00
train.json docs 2023-04-02 21:43:46 -04:00
train.py print args after cleaning, set attn slicing for sd15 if not using amp 2023-04-16 18:48:44 -04:00
trainSD21.json fix clip_skip default in trainSD21.json and update other params 2023-04-19 10:47:02 +02:00
validation_default.json added some resolutions, option for val-loss pos-neg, fix wandb 2023-03-25 20:09:06 -04:00
windows_setup.cmd use compel for sample prompting; enable clip skip for samples 2023-04-14 19:12:06 +02:00

README.md

EveryDream Trainer 2.0

Welcome to v2.0 of EveryDream trainer! Now with more Diffusers, faster, and even more features!

For the most up to date news and community discussions, please join us on Discord!

Discord!

If you find this tool useful, please consider subscribing to the project on Patreon or a one-time donation on Ko-fi. Your donations keep this project alive as a free open source tool with ongoing enhancements.

Patreon or Kofi.

If you're coming from Dreambooth, please read this for an explanation of why EveryDream is not Dreambooth.

Requirements

Windows 10/11, Linux (Ubuntu 20.04+ recommended), or use the linux Docker container

Python 3.10.x

Nvidia GPU with 11GB VRAM or more (note: 1080 Ti and 2080 Ti may require compiling xformers yourself)

16GB system RAM recommended minimum

Single GPU is currently supported

32GB of system RAM recommended for 50k+ training images, but may get away with sufficient swap file and 16GB

Ampere or newer 24GB+ (3090/A5000/4090, etc) recommended for 10k+ images

...Or use any computer with a web browser and run on Vast/Colab. See Cloud section below.

Video tutorials

Basic setup and getting started

Covers install, setup of base models, startning training, basic tweaking, and looking at your logs

Multiaspect and crop jitter explainer

Behind the scenes look at how the trainer handles multiaspect and crop jitter

Companion tools repo

Make sure to check out the tools repo, it has a grab bag of scripts to help with your data curation prior to training. It has automatic bulk BLIP captioning for BLIP, script to web scrape based on Laion data files, script to rename generic pronouns to proper names or append artist tags to your captions, etc.

Cloud/Docker

Free tier Google Colab notebook

* RunPod / Vast Instructions

* Vast.ai Video Tutorial

Runpod Video Tutorial

Docker image link

Docs

Setup and installation

Download and setup base models

Data Preparation

Training - How to start training

Troubleshooting

Basic Tweaking - Important args to understand to get started

Advanced Tweaking and Advanced Optimizer Tweaking

Chaining training sessions - Modify training parameters by chaining training sessions together end to end

Shuffling Tags

Data Balancing - Includes my small treatise on model "preservation" with additional ground truth data

Logging

Validation - Use a validation split on your data to see when you are overfitting and tune hyperparameters

Contributing