1011 lines
49 KiB
Python
1011 lines
49 KiB
Python
"""
|
|
Copyright [2022-2023] Victor C Hall
|
|
|
|
Licensed under the GNU Affero General Public License;
|
|
You may not use this code except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
https://www.gnu.org/licenses/agpl-3.0.en.html
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import os
|
|
import pprint
|
|
import sys
|
|
import math
|
|
import signal
|
|
import argparse
|
|
import logging
|
|
import threading
|
|
import time
|
|
import gc
|
|
import random
|
|
import traceback
|
|
import shutil
|
|
import importlib
|
|
|
|
import torch.nn.functional as F
|
|
from torch.cuda.amp import autocast, GradScaler
|
|
|
|
from colorama import Fore, Style
|
|
import numpy as np
|
|
import itertools
|
|
import torch
|
|
import datetime
|
|
import json
|
|
|
|
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel, DDIMScheduler, DDPMScheduler, \
|
|
DPMSolverMultistepScheduler
|
|
#from diffusers.models import AttentionBlock
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from transformers import CLIPTextModel, CLIPTokenizer
|
|
#from accelerate import Accelerator
|
|
from accelerate.utils import set_seed
|
|
|
|
import wandb
|
|
import webbrowser
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from data.data_loader import DataLoaderMultiAspect
|
|
|
|
from data.every_dream import EveryDreamBatch, build_torch_dataloader
|
|
from data.every_dream_validation import EveryDreamValidator
|
|
from data.image_train_item import ImageTrainItem
|
|
from utils.huggingface_downloader import try_download_model_from_hf
|
|
from utils.convert_diff_to_ckpt import convert as converter
|
|
from utils.isolate_rng import isolate_rng
|
|
|
|
if torch.cuda.is_available():
|
|
from utils.gpu import GPU
|
|
import data.aspects as aspects
|
|
import data.resolver as resolver
|
|
from utils.sample_generator import SampleGenerator
|
|
|
|
_SIGTERM_EXIT_CODE = 130
|
|
_VERY_LARGE_NUMBER = 1e9
|
|
|
|
def get_hf_ckpt_cache_path(ckpt_path):
|
|
return os.path.join("ckpt_cache", os.path.basename(ckpt_path))
|
|
|
|
def convert_to_hf(ckpt_path):
|
|
|
|
hf_cache = get_hf_ckpt_cache_path(ckpt_path)
|
|
from utils.analyze_unet import get_attn_yaml
|
|
|
|
if os.path.isfile(ckpt_path):
|
|
if not os.path.exists(hf_cache):
|
|
os.makedirs(hf_cache)
|
|
logging.info(f"Converting {ckpt_path} to Diffusers format")
|
|
try:
|
|
import utils.convert_original_stable_diffusion_to_diffusers as convert
|
|
convert.convert(ckpt_path, f"ckpt_cache/{ckpt_path}")
|
|
except:
|
|
logging.info("Please manually convert the checkpoint to Diffusers format (one time setup), see readme.")
|
|
exit()
|
|
else:
|
|
logging.info(f"Found cached checkpoint at {hf_cache}")
|
|
|
|
is_sd1attn, yaml = get_attn_yaml(hf_cache)
|
|
return hf_cache, is_sd1attn, yaml
|
|
elif os.path.isdir(hf_cache):
|
|
is_sd1attn, yaml = get_attn_yaml(hf_cache)
|
|
return hf_cache, is_sd1attn, yaml
|
|
else:
|
|
is_sd1attn, yaml = get_attn_yaml(ckpt_path)
|
|
return ckpt_path, is_sd1attn, yaml
|
|
|
|
def setup_local_logger(args):
|
|
"""
|
|
configures logger with file and console logging, logs args, and returns the datestamp
|
|
"""
|
|
log_path = args.logdir
|
|
|
|
if not os.path.exists(log_path):
|
|
os.makedirs(log_path)
|
|
|
|
json_config = json.dumps(vars(args), indent=2)
|
|
datetimestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
|
|
|
with open(os.path.join(log_path, f"{args.project_name}-{datetimestamp}_cfg.json"), "w") as f:
|
|
f.write(f"{json_config}")
|
|
|
|
logfilename = os.path.join(log_path, f"{args.project_name}-{datetimestamp}.log")
|
|
print(f" logging to {logfilename}")
|
|
logging.basicConfig(filename=logfilename,
|
|
level=logging.INFO,
|
|
format="%(asctime)s %(message)s",
|
|
datefmt="%m/%d/%Y %I:%M:%S %p",
|
|
)
|
|
console_handler = logging.StreamHandler(sys.stdout)
|
|
console_handler.addFilter(lambda msg: "Palette images with Transparency expressed in bytes" in msg.getMessage())
|
|
logging.getLogger().addHandler(console_handler)
|
|
import warnings
|
|
warnings.filterwarnings("ignore", message="UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images")
|
|
#from PIL import Image
|
|
|
|
return datetimestamp
|
|
|
|
def log_optimizer(optimizer: torch.optim.Optimizer, betas, epsilon, weight_decay, unet_lr, text_encoder_lr):
|
|
"""
|
|
logs the optimizer settings
|
|
"""
|
|
logging.info(f"{Fore.CYAN} * Optimizer: {optimizer.__class__.__name__} *{Style.RESET_ALL}")
|
|
logging.info(f"{Fore.CYAN} unet lr: {unet_lr}, text encoder lr: {text_encoder_lr}, betas: {betas}, epsilon: {epsilon}, weight_decay: {weight_decay} *{Style.RESET_ALL}")
|
|
|
|
def save_optimizer(optimizer: torch.optim.Optimizer, path: str):
|
|
"""
|
|
Saves the optimizer state
|
|
"""
|
|
torch.save(optimizer.state_dict(), path)
|
|
|
|
def load_optimizer(optimizer: torch.optim.Optimizer, path: str):
|
|
"""
|
|
Loads the optimizer state
|
|
"""
|
|
optimizer.load_state_dict(torch.load(path))
|
|
|
|
def get_gpu_memory(nvsmi):
|
|
"""
|
|
returns the gpu memory usage
|
|
"""
|
|
gpu_query = nvsmi.DeviceQuery('memory.used, memory.total')
|
|
gpu_used_mem = int(gpu_query['gpu'][0]['fb_memory_usage']['used'])
|
|
gpu_total_mem = int(gpu_query['gpu'][0]['fb_memory_usage']['total'])
|
|
return gpu_used_mem, gpu_total_mem
|
|
|
|
def append_epoch_log(global_step: int, epoch_pbar, gpu, log_writer, **logs):
|
|
"""
|
|
updates the vram usage for the epoch
|
|
"""
|
|
if gpu is not None:
|
|
gpu_used_mem, gpu_total_mem = gpu.get_gpu_memory()
|
|
log_writer.add_scalar("performance/vram", gpu_used_mem, global_step)
|
|
epoch_mem_color = Style.RESET_ALL
|
|
if gpu_used_mem > 0.93 * gpu_total_mem:
|
|
epoch_mem_color = Fore.LIGHTRED_EX
|
|
elif gpu_used_mem > 0.85 * gpu_total_mem:
|
|
epoch_mem_color = Fore.LIGHTYELLOW_EX
|
|
elif gpu_used_mem > 0.7 * gpu_total_mem:
|
|
epoch_mem_color = Fore.LIGHTGREEN_EX
|
|
elif gpu_used_mem < 0.5 * gpu_total_mem:
|
|
epoch_mem_color = Fore.LIGHTBLUE_EX
|
|
|
|
if logs is not None:
|
|
epoch_pbar.set_postfix(**logs, vram=f"{epoch_mem_color}{gpu_used_mem}/{gpu_total_mem} MB{Style.RESET_ALL} gs:{global_step}")
|
|
|
|
def set_args_12gb(args):
|
|
logging.info(" Setting args to 12GB mode")
|
|
if not args.gradient_checkpointing:
|
|
logging.info(" - Overiding gradient checkpointing to True")
|
|
args.gradient_checkpointing = True
|
|
if args.batch_size > 2:
|
|
logging.info(" - Overiding batch size to max 2")
|
|
args.batch_size = 2
|
|
args.grad_accum = 1
|
|
if args.resolution > 512:
|
|
logging.info(" - Overiding resolution to max 512")
|
|
args.resolution = 512
|
|
|
|
def find_last_checkpoint(logdir):
|
|
"""
|
|
Finds the last checkpoint in the logdir, recursively
|
|
"""
|
|
last_ckpt = None
|
|
last_date = None
|
|
|
|
for root, dirs, files in os.walk(logdir):
|
|
for file in files:
|
|
if os.path.basename(file) == "model_index.json":
|
|
curr_date = os.path.getmtime(os.path.join(root,file))
|
|
|
|
if last_date is None or curr_date > last_date:
|
|
last_date = curr_date
|
|
last_ckpt = root
|
|
|
|
assert last_ckpt, f"Could not find last checkpoint in logdir: {logdir}"
|
|
assert "errored" not in last_ckpt, f"Found last checkpoint: {last_ckpt}, but it was errored, cancelling"
|
|
|
|
print(f" {Fore.LIGHTCYAN_EX}Found last checkpoint: {last_ckpt}, resuming{Style.RESET_ALL}")
|
|
|
|
return last_ckpt
|
|
|
|
def setup_args(args):
|
|
"""
|
|
Sets defaults for missing args (possible if missing from json config)
|
|
Forces some args to be set based on others for compatibility reasons
|
|
"""
|
|
if args.disable_amp:
|
|
logging.warning(f"{Fore.LIGHTYELLOW_EX} Disabling AMP, not recommended.{Style.RESET_ALL}")
|
|
args.amp = False
|
|
else:
|
|
args.amp = True
|
|
|
|
if args.disable_unet_training and args.disable_textenc_training:
|
|
raise ValueError("Both unet and textenc are disabled, nothing to train")
|
|
|
|
if args.resume_ckpt == "findlast":
|
|
logging.info(f"{Fore.LIGHTCYAN_EX} Finding last checkpoint in logdir: {args.logdir}{Style.RESET_ALL}")
|
|
# find the last checkpoint in the logdir
|
|
args.resume_ckpt = find_last_checkpoint(args.logdir)
|
|
|
|
if args.lowvram:
|
|
set_args_12gb(args)
|
|
|
|
if not args.shuffle_tags:
|
|
args.shuffle_tags = False
|
|
|
|
args.clip_skip = max(min(4, args.clip_skip), 0)
|
|
|
|
if args.useadam8bit:
|
|
logging.warning(f"{Fore.LIGHTYELLOW_EX} Useadam8bit arg is deprecated, use optimizer.json instead, which defaults to useadam8bit anyway{Style.RESET_ALL}")
|
|
|
|
if args.ckpt_every_n_minutes is None and args.save_every_n_epochs is None:
|
|
logging.info(f"{Fore.LIGHTCYAN_EX} No checkpoint saving specified, defaulting to every 20 minutes.{Style.RESET_ALL}")
|
|
args.ckpt_every_n_minutes = 20
|
|
|
|
if args.ckpt_every_n_minutes is None or args.ckpt_every_n_minutes < 1:
|
|
args.ckpt_every_n_minutes = _VERY_LARGE_NUMBER
|
|
|
|
if args.save_every_n_epochs is None or args.save_every_n_epochs < 1:
|
|
args.save_every_n_epochs = _VERY_LARGE_NUMBER
|
|
|
|
if args.save_every_n_epochs < _VERY_LARGE_NUMBER and args.ckpt_every_n_minutes < _VERY_LARGE_NUMBER:
|
|
logging.warning(f"{Fore.LIGHTYELLOW_EX}** Both save_every_n_epochs and ckpt_every_n_minutes are set, this will potentially spam a lot of checkpoints{Style.RESET_ALL}")
|
|
logging.warning(f"{Fore.LIGHTYELLOW_EX}** save_every_n_epochs: {args.save_every_n_epochs}, ckpt_every_n_minutes: {args.ckpt_every_n_minutes}{Style.RESET_ALL}")
|
|
|
|
if args.cond_dropout > 0.26:
|
|
logging.warning(f"{Fore.LIGHTYELLOW_EX}** cond_dropout is set fairly high: {args.cond_dropout}, make sure this was intended{Style.RESET_ALL}")
|
|
|
|
if args.grad_accum > 1:
|
|
logging.info(f"{Fore.CYAN} Batch size: {args.batch_size}, grad accum: {args.grad_accum}, 'effective' batch size: {args.batch_size * args.grad_accum}{Style.RESET_ALL}")
|
|
|
|
total_batch_size = args.batch_size * args.grad_accum
|
|
|
|
if args.scale_lr is not None and args.scale_lr:
|
|
tmp_lr = args.lr
|
|
args.lr = args.lr * (total_batch_size**0.55)
|
|
logging.info(f"{Fore.CYAN} * Scaling learning rate {tmp_lr} by {total_batch_size**0.5}, new value: {args.lr}{Style.RESET_ALL}")
|
|
|
|
if args.save_ckpt_dir is not None and not os.path.exists(args.save_ckpt_dir):
|
|
os.makedirs(args.save_ckpt_dir)
|
|
|
|
if args.rated_dataset:
|
|
args.rated_dataset_target_dropout_percent = min(max(args.rated_dataset_target_dropout_percent, 0), 100)
|
|
|
|
logging.info(logging.info(f"{Fore.CYAN} * Activating rated images learning with a target rate of {args.rated_dataset_target_dropout_percent}% {Style.RESET_ALL}"))
|
|
|
|
args.aspects = aspects.get_aspect_buckets(args.resolution)
|
|
|
|
return args
|
|
|
|
def update_grad_scaler(scaler: GradScaler, global_step, epoch, step):
|
|
if global_step == 500:
|
|
factor = 1.8
|
|
scaler.set_growth_factor(factor)
|
|
scaler.set_backoff_factor(1/factor)
|
|
scaler.set_growth_interval(50)
|
|
if global_step == 1000:
|
|
factor = 1.6
|
|
scaler.set_growth_factor(factor)
|
|
scaler.set_backoff_factor(1/factor)
|
|
scaler.set_growth_interval(50)
|
|
if global_step == 2000:
|
|
factor = 1.3
|
|
scaler.set_growth_factor(factor)
|
|
scaler.set_backoff_factor(1/factor)
|
|
scaler.set_growth_interval(100)
|
|
if global_step == 4000:
|
|
factor = 1.15
|
|
scaler.set_growth_factor(factor)
|
|
scaler.set_backoff_factor(1/factor)
|
|
scaler.set_growth_interval(100)
|
|
|
|
def report_image_train_item_problems(log_folder: str, items: list[ImageTrainItem]) -> None:
|
|
for item in items:
|
|
if item.error is not None:
|
|
logging.error(f"{Fore.LIGHTRED_EX} *** Error opening {Fore.LIGHTYELLOW_EX}{item.pathname}{Fore.LIGHTRED_EX} to get metadata. File may be corrupt and will be skipped.{Style.RESET_ALL}")
|
|
logging.error(f" *** exception: {item.error}")
|
|
|
|
undersized_items = [item for item in items if item.is_undersized]
|
|
|
|
if len(undersized_items) > 0:
|
|
underized_log_path = os.path.join(log_folder, "undersized_images.txt")
|
|
logging.warning(f"{Fore.LIGHTRED_EX} ** Some images are smaller than the target size, consider using larger images{Style.RESET_ALL}")
|
|
logging.warning(f"{Fore.LIGHTRED_EX} ** Check {underized_log_path} for more information.{Style.RESET_ALL}")
|
|
with open(underized_log_path, "w", encoding='utf-8') as undersized_images_file:
|
|
undersized_images_file.write(f" The following images are smaller than the target size, consider removing or sourcing a larger copy:")
|
|
for undersized_item in undersized_items:
|
|
message = f" *** {undersized_item.pathname} with size: {undersized_item.image_size} is smaller than target size: {undersized_item.target_wh}\n"
|
|
undersized_images_file.write(message)
|
|
|
|
def resolve_image_train_items(args: argparse.Namespace, log_folder: str) -> list[ImageTrainItem]:
|
|
logging.info(f"* DLMA resolution {args.resolution}, buckets: {args.aspects}")
|
|
logging.info(" Preloading images...")
|
|
|
|
resolved_items = resolver.resolve(args.data_root, args)
|
|
report_image_train_item_problems(log_folder, resolved_items)
|
|
image_paths = set(map(lambda item: item.pathname, resolved_items))
|
|
|
|
# Remove erroneous items
|
|
image_train_items = [item for item in resolved_items if item.error is None]
|
|
print (f" * Found {len(image_paths)} files in '{args.data_root}'")
|
|
|
|
return image_train_items
|
|
|
|
def write_batch_schedule(args: argparse.Namespace, log_folder: str, train_batch: EveryDreamBatch, epoch: int):
|
|
if args.write_schedule:
|
|
with open(f"{log_folder}/ep{epoch}_batch_schedule.txt", "w", encoding='utf-8') as f:
|
|
for i in range(len(train_batch.image_train_items)):
|
|
try:
|
|
item = train_batch.image_train_items[i]
|
|
f.write(f"step:{int(i / train_batch.batch_size):05}, wh:{item.target_wh}, r:{item.runt_size}, path:{item.pathname}\n")
|
|
except Exception as e:
|
|
logging.error(f" * Error writing to batch schedule for file path: {item.pathname}")
|
|
|
|
|
|
def read_sample_prompts(sample_prompts_file_path: str):
|
|
sample_prompts = []
|
|
with open(sample_prompts_file_path, "r") as f:
|
|
for line in f:
|
|
sample_prompts.append(line.strip())
|
|
return sample_prompts
|
|
|
|
def log_args(log_writer, args):
|
|
arglog = "args:\n"
|
|
for arg, value in sorted(vars(args).items()):
|
|
arglog += f"{arg}={value}, "
|
|
log_writer.add_text("config", arglog)
|
|
|
|
|
|
def main(args):
|
|
"""
|
|
Main entry point
|
|
"""
|
|
log_time = setup_local_logger(args)
|
|
args = setup_args(args)
|
|
|
|
if args.notebook:
|
|
from tqdm.notebook import tqdm
|
|
else:
|
|
from tqdm.auto import tqdm
|
|
|
|
if args.seed == -1:
|
|
args.seed = random.randint(0, 2**30)
|
|
seed = args.seed
|
|
logging.info(f" Seed: {seed}")
|
|
set_seed(seed)
|
|
if torch.cuda.is_available():
|
|
device = torch.device(f"cuda:{args.gpuid}")
|
|
gpu = GPU(device)
|
|
torch.backends.cudnn.benchmark = True
|
|
else:
|
|
logging.warning("*** Running on CPU. This is for testing loading/config parsing code only.")
|
|
device = 'cpu'
|
|
gpu = None
|
|
|
|
log_folder = os.path.join(args.logdir, f"{args.project_name}_{log_time}")
|
|
|
|
if not os.path.exists(log_folder):
|
|
os.makedirs(log_folder)
|
|
|
|
@torch.no_grad()
|
|
def __save_model(save_path, unet, text_encoder, tokenizer, scheduler, vae, save_ckpt_dir, yaml_name, save_full_precision=False):
|
|
"""
|
|
Save the model to disk
|
|
"""
|
|
global global_step
|
|
if global_step is None or global_step == 0:
|
|
logging.warning(" No model to save, something likely blew up on startup, not saving")
|
|
return
|
|
logging.info(f" * Saving diffusers model to {save_path}")
|
|
pipeline = StableDiffusionPipeline(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None, # save vram
|
|
requires_safety_checker=None, # avoid nag
|
|
feature_extractor=None, # must be none of no safety checker
|
|
)
|
|
pipeline.save_pretrained(save_path)
|
|
sd_ckpt_path = f"{os.path.basename(save_path)}.ckpt"
|
|
|
|
if save_ckpt_dir is not None:
|
|
sd_ckpt_full = os.path.join(save_ckpt_dir, sd_ckpt_path)
|
|
else:
|
|
sd_ckpt_full = os.path.join(os.curdir, sd_ckpt_path)
|
|
save_ckpt_dir = os.curdir
|
|
|
|
half = not save_full_precision
|
|
|
|
logging.info(f" * Saving SD model to {sd_ckpt_full}")
|
|
converter(model_path=save_path, checkpoint_path=sd_ckpt_full, half=half)
|
|
|
|
if yaml_name and yaml_name != "v1-inference.yaml":
|
|
yaml_save_path = f"{os.path.join(save_ckpt_dir, os.path.basename(save_path))}.yaml"
|
|
logging.info(f" * Saving yaml to {yaml_save_path}")
|
|
shutil.copyfile(yaml_name, yaml_save_path)
|
|
|
|
# optimizer_path = os.path.join(save_path, "optimizer.pt")
|
|
# if self.save_optimizer_flag:
|
|
# logging.info(f" Saving optimizer state to {save_path}")
|
|
# self.save_optimizer(self.ctx.optimizer, optimizer_path)
|
|
|
|
try:
|
|
|
|
# check for a local file
|
|
hf_cache_path = get_hf_ckpt_cache_path(args.resume_ckpt)
|
|
if os.path.exists(hf_cache_path) or os.path.exists(args.resume_ckpt):
|
|
model_root_folder, is_sd1attn, yaml = convert_to_hf(args.resume_ckpt)
|
|
text_encoder = CLIPTextModel.from_pretrained(model_root_folder, subfolder="text_encoder")
|
|
vae = AutoencoderKL.from_pretrained(model_root_folder, subfolder="vae")
|
|
unet = UNet2DConditionModel.from_pretrained(model_root_folder, subfolder="unet")
|
|
else:
|
|
# try to download from HF using resume_ckpt as a repo id
|
|
downloaded = try_download_model_from_hf(repo_id=args.resume_ckpt)
|
|
if downloaded is None:
|
|
raise ValueError(f"No local file/folder for {args.resume_ckpt}, and no matching huggingface.co repo could be downloaded")
|
|
pipe, model_root_folder, is_sd1attn, yaml = downloaded
|
|
text_encoder = pipe.text_encoder
|
|
vae = pipe.vae
|
|
unet = pipe.unet
|
|
del pipe
|
|
|
|
reference_scheduler = DDIMScheduler.from_pretrained(model_root_folder, subfolder="scheduler")
|
|
noise_scheduler = DDPMScheduler.from_pretrained(model_root_folder, subfolder="scheduler")
|
|
tokenizer = CLIPTokenizer.from_pretrained(model_root_folder, subfolder="tokenizer", use_fast=False)
|
|
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
logging.error(" * Failed to load checkpoint *")
|
|
raise
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
text_encoder.gradient_checkpointing_enable()
|
|
|
|
if not args.disable_xformers:
|
|
if (args.amp and is_sd1attn) or (not is_sd1attn):
|
|
try:
|
|
unet.enable_xformers_memory_efficient_attention()
|
|
logging.info("Enabled xformers")
|
|
except Exception as ex:
|
|
logging.warning("failed to load xformers, using attention slicing instead")
|
|
unet.set_attention_slice("auto")
|
|
pass
|
|
else:
|
|
logging.info("xformers disabled, using attention slicing instead")
|
|
unet.set_attention_slice("auto")
|
|
|
|
vae = vae.to(device, dtype=torch.float16 if args.amp else torch.float32)
|
|
unet = unet.to(device, dtype=torch.float32)
|
|
if args.disable_textenc_training and args.amp:
|
|
text_encoder = text_encoder.to(device, dtype=torch.float16)
|
|
else:
|
|
text_encoder = text_encoder.to(device, dtype=torch.float32)
|
|
|
|
optimizer_config = None
|
|
optimizer_config_path = args.optimizer_config if args.optimizer_config else "optimizer.json"
|
|
if os.path.exists(os.path.join(os.curdir, optimizer_config_path)):
|
|
with open(os.path.join(os.curdir, optimizer_config_path), "r") as f:
|
|
optimizer_config = json.load(f)
|
|
|
|
if args.wandb:
|
|
wandb.tensorboard.patch(root_logdir=log_folder, pytorch=False, tensorboard_x=False, save=False)
|
|
wandb_run = wandb.init(
|
|
project=args.project_name,
|
|
config={"main_cfg": vars(args), "optimizer_cfg": optimizer_config},
|
|
name=args.run_name,
|
|
#sync_tensorboard=True, # broken?
|
|
#dir=log_folder, # only for save, just duplicates the TB log to /{log_folder}/wandb ...
|
|
)
|
|
try:
|
|
if webbrowser.get():
|
|
webbrowser.open(wandb_run.url, new=2)
|
|
except Exception:
|
|
pass
|
|
|
|
log_writer = SummaryWriter(log_dir=log_folder,
|
|
flush_secs=20,
|
|
comment=args.run_name if args.run_name is not None else log_time,
|
|
)
|
|
|
|
betas = [0.9, 0.999]
|
|
epsilon = 1e-8
|
|
weight_decay = 0.01
|
|
opt_class = None
|
|
optimizer = None
|
|
|
|
default_lr = 1e-6
|
|
curr_lr = args.lr
|
|
text_encoder_lr_scale = 1.0
|
|
|
|
if optimizer_config is not None:
|
|
betas = optimizer_config["betas"]
|
|
epsilon = optimizer_config["epsilon"]
|
|
weight_decay = optimizer_config["weight_decay"]
|
|
optimizer_name = optimizer_config["optimizer"]
|
|
curr_lr = optimizer_config.get("lr", curr_lr)
|
|
if args.lr is not None:
|
|
curr_lr = args.lr
|
|
logging.info(f"Overriding LR from optimizer config with main config/cli LR setting: {curr_lr}")
|
|
|
|
text_encoder_lr_scale = optimizer_config.get("text_encoder_lr_scale", text_encoder_lr_scale)
|
|
if text_encoder_lr_scale != 1.0:
|
|
logging.info(f" * Using text encoder LR scale {text_encoder_lr_scale}")
|
|
|
|
logging.info(f" * Loaded optimizer args from {optimizer_config_path} *")
|
|
|
|
if curr_lr is None:
|
|
curr_lr = default_lr
|
|
logging.warning(f"No LR setting found, defaulting to {default_lr}")
|
|
|
|
curr_text_encoder_lr = curr_lr * text_encoder_lr_scale
|
|
|
|
if args.disable_textenc_training:
|
|
logging.info(f"{Fore.CYAN} * NOT Training Text Encoder, quality reduced *{Style.RESET_ALL}")
|
|
params_to_train = itertools.chain(unet.parameters())
|
|
elif args.disable_unet_training:
|
|
logging.info(f"{Fore.CYAN} * Training Text Encoder Only *{Style.RESET_ALL}")
|
|
if text_encoder_lr_scale != 1:
|
|
logging.warning(f"{Fore.YELLOW} * Ignoring text_encoder_lr_scale {text_encoder_lr_scale} and using the "
|
|
f"Unet LR {curr_lr} for the text encoder instead *{Style.RESET_ALL}")
|
|
params_to_train = itertools.chain(text_encoder.parameters())
|
|
else:
|
|
logging.info(f"{Fore.CYAN} * Training Text and Unet *{Style.RESET_ALL}")
|
|
params_to_train = [{'params': unet.parameters()},
|
|
{'params': text_encoder.parameters(), 'lr': curr_text_encoder_lr}]
|
|
|
|
if optimizer_name:
|
|
if optimizer_name == "lion":
|
|
from lion_pytorch import Lion
|
|
opt_class = Lion
|
|
optimizer = opt_class(
|
|
itertools.chain(params_to_train),
|
|
lr=curr_lr,
|
|
betas=(betas[0], betas[1]),
|
|
weight_decay=weight_decay,
|
|
)
|
|
elif optimizer_name in ["adamw"]:
|
|
opt_class = torch.optim.AdamW
|
|
else:
|
|
import bitsandbytes as bnb
|
|
opt_class = bnb.optim.AdamW8bit
|
|
|
|
if not optimizer:
|
|
optimizer = opt_class(
|
|
itertools.chain(params_to_train),
|
|
lr=curr_lr,
|
|
betas=(betas[0], betas[1]),
|
|
eps=epsilon,
|
|
weight_decay=weight_decay,
|
|
amsgrad=False,
|
|
)
|
|
|
|
log_optimizer(optimizer, betas, epsilon, weight_decay, curr_lr, curr_text_encoder_lr)
|
|
|
|
image_train_items = resolve_image_train_items(args, log_folder)
|
|
|
|
validator = None
|
|
if args.validation_config is not None:
|
|
validator = EveryDreamValidator(args.validation_config,
|
|
default_batch_size=args.batch_size,
|
|
resolution=args.resolution,
|
|
log_writer=log_writer,
|
|
)
|
|
# the validation dataset may need to steal some items from image_train_items
|
|
image_train_items = validator.prepare_validation_splits(image_train_items, tokenizer=tokenizer)
|
|
|
|
data_loader = DataLoaderMultiAspect(
|
|
image_train_items=image_train_items,
|
|
seed=seed,
|
|
batch_size=args.batch_size,
|
|
)
|
|
|
|
train_batch = EveryDreamBatch(
|
|
data_loader=data_loader,
|
|
debug_level=1,
|
|
conditional_dropout=args.cond_dropout,
|
|
tokenizer=tokenizer,
|
|
seed = seed,
|
|
shuffle_tags=args.shuffle_tags,
|
|
rated_dataset=args.rated_dataset,
|
|
rated_dataset_dropout_target=(1.0 - (args.rated_dataset_target_dropout_percent / 100.0))
|
|
)
|
|
|
|
torch.cuda.benchmark = False
|
|
|
|
epoch_len = math.ceil(len(train_batch) / args.batch_size)
|
|
|
|
if args.lr_decay_steps is None or args.lr_decay_steps < 1:
|
|
args.lr_decay_steps = int(epoch_len * args.max_epochs * 1.5)
|
|
|
|
lr_warmup_steps = int(args.lr_decay_steps / 50) if args.lr_warmup_steps is None else args.lr_warmup_steps
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=lr_warmup_steps,
|
|
num_training_steps=args.lr_decay_steps,
|
|
)
|
|
|
|
log_args(log_writer, args)
|
|
|
|
sample_generator = SampleGenerator(log_folder=log_folder, log_writer=log_writer,
|
|
default_resolution=args.resolution, default_seed=args.seed,
|
|
config_file_path=args.sample_prompts,
|
|
batch_size=max(1,args.batch_size//2),
|
|
default_sample_steps=args.sample_steps,
|
|
use_xformers=is_xformers_available() and not args.disable_xformers)
|
|
|
|
"""
|
|
Train the model
|
|
|
|
"""
|
|
print(f" {Fore.LIGHTGREEN_EX}** Welcome to EveryDream trainer 2.0!**{Style.RESET_ALL}")
|
|
print(f" (C) 2022-2023 Victor C Hall This program is licensed under AGPL 3.0 https://www.gnu.org/licenses/agpl-3.0.en.html")
|
|
print()
|
|
print("** Trainer Starting **")
|
|
|
|
global interrupted
|
|
interrupted = False
|
|
|
|
def sigterm_handler(signum, frame):
|
|
"""
|
|
handles sigterm
|
|
"""
|
|
is_main_thread = (torch.utils.data.get_worker_info() == None)
|
|
if is_main_thread:
|
|
global interrupted
|
|
if not interrupted:
|
|
interrupted=True
|
|
global global_step
|
|
#TODO: save model on ctrl-c
|
|
interrupted_checkpoint_path = os.path.join(f"{log_folder}/ckpts/interrupted-gs{global_step}")
|
|
print()
|
|
logging.error(f"{Fore.LIGHTRED_EX} ************************************************************************{Style.RESET_ALL}")
|
|
logging.error(f"{Fore.LIGHTRED_EX} CTRL-C received, attempting to save model to {interrupted_checkpoint_path}{Style.RESET_ALL}")
|
|
logging.error(f"{Fore.LIGHTRED_EX} ************************************************************************{Style.RESET_ALL}")
|
|
time.sleep(2) # give opportunity to ctrl-C again to cancel save
|
|
__save_model(interrupted_checkpoint_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, args.save_full_precision)
|
|
exit(_SIGTERM_EXIT_CODE)
|
|
else:
|
|
# non-main threads (i.e. dataloader workers) should exit cleanly
|
|
exit(0)
|
|
|
|
signal.signal(signal.SIGINT, sigterm_handler)
|
|
|
|
if not os.path.exists(f"{log_folder}/samples/"):
|
|
os.makedirs(f"{log_folder}/samples/")
|
|
|
|
if gpu is not None:
|
|
gpu_used_mem, gpu_total_mem = gpu.get_gpu_memory()
|
|
logging.info(f" Pretraining GPU Memory: {gpu_used_mem} / {gpu_total_mem} MB")
|
|
logging.info(f" saving ckpts every {args.ckpt_every_n_minutes} minutes")
|
|
logging.info(f" saving ckpts every {args.save_every_n_epochs } epochs")
|
|
|
|
train_dataloader = build_torch_dataloader(train_batch, batch_size=args.batch_size)
|
|
|
|
unet.train() if not args.disable_unet_training else unet.eval()
|
|
text_encoder.train() if not args.disable_textenc_training else text_encoder.eval()
|
|
|
|
logging.info(f" unet device: {unet.device}, precision: {unet.dtype}, training: {unet.training}")
|
|
logging.info(f" text_encoder device: {text_encoder.device}, precision: {text_encoder.dtype}, training: {text_encoder.training}")
|
|
logging.info(f" vae device: {vae.device}, precision: {vae.dtype}, training: {vae.training}")
|
|
logging.info(f" scheduler: {noise_scheduler.__class__}")
|
|
|
|
logging.info(f" {Fore.GREEN}Project name: {Style.RESET_ALL}{Fore.LIGHTGREEN_EX}{args.project_name}{Style.RESET_ALL}")
|
|
logging.info(f" {Fore.GREEN}grad_accum: {Style.RESET_ALL}{Fore.LIGHTGREEN_EX}{args.grad_accum}{Style.RESET_ALL}"),
|
|
logging.info(f" {Fore.GREEN}batch_size: {Style.RESET_ALL}{Fore.LIGHTGREEN_EX}{args.batch_size}{Style.RESET_ALL}")
|
|
logging.info(f" {Fore.GREEN}epoch_len: {Fore.LIGHTGREEN_EX}{epoch_len}{Style.RESET_ALL}")
|
|
|
|
scaler = GradScaler(
|
|
enabled=args.amp,
|
|
init_scale=2**17.5,
|
|
growth_factor=2,
|
|
backoff_factor=1.0/2,
|
|
growth_interval=25,
|
|
)
|
|
logging.info(f" Grad scaler enabled: {scaler.is_enabled()} (amp mode)")
|
|
|
|
epoch_pbar = tqdm(range(args.max_epochs), position=0, leave=True, dynamic_ncols=True)
|
|
epoch_pbar.set_description(f"{Fore.LIGHTCYAN_EX}Epochs{Style.RESET_ALL}")
|
|
epoch_times = []
|
|
|
|
global global_step
|
|
global_step = 0
|
|
training_start_time = time.time()
|
|
last_epoch_saved_time = training_start_time
|
|
|
|
append_epoch_log(global_step=global_step, epoch_pbar=epoch_pbar, gpu=gpu, log_writer=log_writer)
|
|
|
|
loss_log_step = []
|
|
|
|
assert len(train_batch) > 0, "train_batch is empty, check that your data_root is correct"
|
|
|
|
# actual prediction function - shared between train and validate
|
|
def get_model_prediction_and_target(image, tokens, zero_frequency_noise_ratio=0.0):
|
|
with torch.no_grad():
|
|
with autocast(enabled=args.amp):
|
|
pixel_values = image.to(memory_format=torch.contiguous_format).to(unet.device)
|
|
latents = vae.encode(pixel_values, return_dict=False)
|
|
del pixel_values
|
|
latents = latents[0].sample() * 0.18215
|
|
|
|
if zero_frequency_noise_ratio > 0.0:
|
|
# see https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
|
zero_frequency_noise = zero_frequency_noise_ratio * torch.randn(latents.shape[0], latents.shape[1], 1, 1, device=latents.device)
|
|
noise = torch.randn_like(latents) + zero_frequency_noise
|
|
else:
|
|
noise = torch.randn_like(latents)
|
|
|
|
bsz = latents.shape[0]
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
|
timesteps = timesteps.long()
|
|
|
|
cuda_caption = tokens.to(text_encoder.device)
|
|
|
|
encoder_hidden_states = text_encoder(cuda_caption, output_hidden_states=True)
|
|
|
|
if args.clip_skip > 0:
|
|
encoder_hidden_states = text_encoder.text_model.final_layer_norm(
|
|
encoder_hidden_states.hidden_states[-args.clip_skip])
|
|
else:
|
|
encoder_hidden_states = encoder_hidden_states.last_hidden_state
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif noise_scheduler.config.prediction_type in ["v_prediction", "v-prediction"]:
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
|
del noise, latents, cuda_caption
|
|
|
|
with autocast(enabled=args.amp):
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
return model_pred, target
|
|
|
|
def generate_samples(global_step: int, batch):
|
|
with isolate_rng():
|
|
prev_sample_steps = sample_generator.sample_steps
|
|
sample_generator.reload_config()
|
|
if prev_sample_steps != sample_generator.sample_steps:
|
|
next_sample_step = math.ceil((global_step + 1) / sample_generator.sample_steps) * sample_generator.sample_steps
|
|
print(f" * SampleGenerator config changed, now generating images samples every " +
|
|
f"{sample_generator.sample_steps} training steps (next={next_sample_step})")
|
|
sample_generator.update_random_captions(batch["captions"])
|
|
inference_pipe = sample_generator.create_inference_pipe(unet=unet,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
vae=vae,
|
|
diffusers_scheduler_config=reference_scheduler.config
|
|
).to(device)
|
|
sample_generator.generate_samples(inference_pipe, global_step)
|
|
|
|
del inference_pipe
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# Pre-train validation to establish a starting point on the loss graph
|
|
if validator:
|
|
validator.do_validation_if_appropriate(epoch=0, global_step=0,
|
|
get_model_prediction_and_target_callable=get_model_prediction_and_target)
|
|
|
|
# the sample generator might be configured to generate samples before step 0
|
|
if sample_generator.generate_pretrain_samples:
|
|
_, batch = next(enumerate(train_dataloader))
|
|
generate_samples(global_step=0, batch=batch)
|
|
|
|
try:
|
|
write_batch_schedule(args, log_folder, train_batch, epoch = 0)
|
|
|
|
for epoch in range(args.max_epochs):
|
|
loss_epoch = []
|
|
epoch_start_time = time.time()
|
|
images_per_sec_log_step = []
|
|
|
|
epoch_len = math.ceil(len(train_batch) / args.batch_size)
|
|
steps_pbar = tqdm(range(epoch_len), position=1, leave=False, dynamic_ncols=True)
|
|
steps_pbar.set_description(f"{Fore.LIGHTCYAN_EX}Steps{Style.RESET_ALL}")
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
step_start_time = time.time()
|
|
|
|
model_pred, target = get_model_prediction_and_target(batch["image"], batch["tokens"], args.zero_frequency_noise_ratio)
|
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
|
|
|
del target, model_pred
|
|
|
|
if batch["runt_size"] > 0:
|
|
loss_scale = batch["runt_size"] / args.batch_size
|
|
loss = loss * loss_scale
|
|
|
|
scaler.scale(loss).backward()
|
|
|
|
if args.clip_grad_norm is not None:
|
|
if not args.disable_unet_training:
|
|
torch.nn.utils.clip_grad_norm_(parameters=unet.parameters(), max_norm=args.clip_grad_norm)
|
|
if not args.disable_textenc_training:
|
|
torch.nn.utils.clip_grad_norm_(parameters=text_encoder.parameters(), max_norm=args.clip_grad_norm)
|
|
|
|
if ((global_step + 1) % args.grad_accum == 0) or (step == epoch_len - 1):
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
lr_scheduler.step()
|
|
|
|
loss_step = loss.detach().item()
|
|
|
|
steps_pbar.set_postfix({"loss/step": loss_step}, {"gs": global_step})
|
|
steps_pbar.update(1)
|
|
|
|
images_per_sec = args.batch_size / (time.time() - step_start_time)
|
|
images_per_sec_log_step.append(images_per_sec)
|
|
|
|
loss_log_step.append(loss_step)
|
|
loss_epoch.append(loss_step)
|
|
|
|
if (global_step + 1) % args.log_step == 0:
|
|
curr_lr = lr_scheduler.get_last_lr()[0]
|
|
loss_local = sum(loss_log_step) / len(loss_log_step)
|
|
loss_log_step = []
|
|
logs = {"loss/log_step": loss_local, "lr": curr_lr, "img/s": images_per_sec}
|
|
if args.disable_textenc_training or args.disable_unet_training or text_encoder_lr_scale == 1:
|
|
log_writer.add_scalar(tag="hyperparamater/lr", scalar_value=curr_lr, global_step=global_step)
|
|
else:
|
|
log_writer.add_scalar(tag="hyperparamater/lr unet", scalar_value=curr_lr, global_step=global_step)
|
|
curr_text_encoder_lr = lr_scheduler.get_last_lr()[1]
|
|
log_writer.add_scalar(tag="hyperparamater/lr text encoder", scalar_value=curr_text_encoder_lr, global_step=global_step)
|
|
log_writer.add_scalar(tag="loss/log_step", scalar_value=loss_local, global_step=global_step)
|
|
sum_img = sum(images_per_sec_log_step)
|
|
avg = sum_img / len(images_per_sec_log_step)
|
|
images_per_sec_log_step = []
|
|
if args.amp:
|
|
log_writer.add_scalar(tag="hyperparamater/grad scale", scalar_value=scaler.get_scale(), global_step=global_step)
|
|
log_writer.add_scalar(tag="performance/images per second", scalar_value=avg, global_step=global_step)
|
|
append_epoch_log(global_step=global_step, epoch_pbar=epoch_pbar, gpu=gpu, log_writer=log_writer, **logs)
|
|
torch.cuda.empty_cache()
|
|
|
|
if (global_step + 1) % sample_generator.sample_steps == 0:
|
|
generate_samples(global_step=global_step, batch=batch)
|
|
|
|
min_since_last_ckpt = (time.time() - last_epoch_saved_time) / 60
|
|
|
|
if args.ckpt_every_n_minutes is not None and (min_since_last_ckpt > args.ckpt_every_n_minutes):
|
|
last_epoch_saved_time = time.time()
|
|
logging.info(f"Saving model, {args.ckpt_every_n_minutes} mins at step {global_step}")
|
|
save_path = os.path.join(f"{log_folder}/ckpts/{args.project_name}-ep{epoch:02}-gs{global_step:05}")
|
|
__save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, yaml, args.save_full_precision)
|
|
|
|
if epoch > 0 and epoch % args.save_every_n_epochs == 0 and step == 0 and epoch < args.max_epochs - 1 and epoch >= args.save_ckpts_from_n_epochs:
|
|
logging.info(f" Saving model, {args.save_every_n_epochs} epochs at step {global_step}")
|
|
save_path = os.path.join(f"{log_folder}/ckpts/{args.project_name}-ep{epoch:02}-gs{global_step:05}")
|
|
__save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, yaml, args.save_full_precision)
|
|
|
|
del batch
|
|
global_step += 1
|
|
update_grad_scaler(scaler, global_step, epoch, step) if args.amp else None
|
|
# end of step
|
|
|
|
steps_pbar.close()
|
|
|
|
elapsed_epoch_time = (time.time() - epoch_start_time) / 60
|
|
epoch_times.append(dict(epoch=epoch, time=elapsed_epoch_time))
|
|
log_writer.add_scalar("performance/minutes per epoch", elapsed_epoch_time, global_step)
|
|
|
|
epoch_pbar.update(1)
|
|
if epoch < args.max_epochs - 1:
|
|
train_batch.shuffle(epoch_n=epoch, max_epochs = args.max_epochs)
|
|
write_batch_schedule(args, log_folder, train_batch, epoch + 1)
|
|
|
|
loss_local = sum(loss_epoch) / len(loss_epoch)
|
|
log_writer.add_scalar(tag="loss/epoch", scalar_value=loss_local, global_step=global_step)
|
|
|
|
if validator:
|
|
validator.do_validation_if_appropriate(epoch+1, global_step, get_model_prediction_and_target)
|
|
|
|
gc.collect()
|
|
# end of epoch
|
|
|
|
# end of training
|
|
|
|
save_path = os.path.join(f"{log_folder}/ckpts/last-{args.project_name}-ep{epoch:02}-gs{global_step:05}")
|
|
__save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, yaml, args.save_full_precision)
|
|
|
|
total_elapsed_time = time.time() - training_start_time
|
|
logging.info(f"{Fore.CYAN}Training complete{Style.RESET_ALL}")
|
|
logging.info(f"Total training time took {total_elapsed_time/60:.2f} minutes, total steps: {global_step}")
|
|
logging.info(f"Average epoch time: {np.mean([t['time'] for t in epoch_times]):.2f} minutes")
|
|
|
|
except Exception as ex:
|
|
logging.error(f"{Fore.LIGHTYELLOW_EX}Something went wrong, attempting to save model{Style.RESET_ALL}")
|
|
save_path = os.path.join(f"{log_folder}/ckpts/errored-{args.project_name}-ep{epoch:02}-gs{global_step:05}")
|
|
__save_model(save_path, unet, text_encoder, tokenizer, noise_scheduler, vae, args.save_ckpt_dir, yaml, args.save_full_precision)
|
|
raise ex
|
|
|
|
logging.info(f"{Fore.LIGHTWHITE_EX} ***************************{Style.RESET_ALL}")
|
|
logging.info(f"{Fore.LIGHTWHITE_EX} **** Finished training ****{Style.RESET_ALL}")
|
|
logging.info(f"{Fore.LIGHTWHITE_EX} ***************************{Style.RESET_ALL}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
supported_resolutions = aspects.get_supported_resolutions()
|
|
argparser = argparse.ArgumentParser(description="EveryDream2 Training options")
|
|
argparser.add_argument("--config", type=str, required=False, default=None, help="JSON config file to load options from")
|
|
args, argv = argparser.parse_known_args()
|
|
|
|
if args.config is not None:
|
|
print(f"Loading training config from {args.config}.")
|
|
with open(args.config, 'rt') as f:
|
|
args.__dict__.update(json.load(f))
|
|
if len(argv) > 0:
|
|
print(f"Config .json loaded but there are additional CLI arguments -- these will override values in {args.config}.")
|
|
else:
|
|
print("No config file specified, using command line args")
|
|
|
|
argparser = argparse.ArgumentParser(description="EveryDream2 Training options")
|
|
argparser.add_argument("--amp", action="store_true", default=False, help="deprecated, use --disable_amp if you wish to disable AMP")
|
|
argparser.add_argument("--batch_size", type=int, default=2, help="Batch size (def: 2)")
|
|
argparser.add_argument("--ckpt_every_n_minutes", type=int, default=None, help="Save checkpoint every n minutes, def: 20")
|
|
argparser.add_argument("--clip_grad_norm", type=float, default=None, help="Clip gradient norm (def: disabled) (ex: 1.5), useful if loss=nan?")
|
|
argparser.add_argument("--clip_skip", type=int, default=0, help="Train using penultimate layer (def: 0) (2 is 'penultimate')", choices=[0, 1, 2, 3, 4])
|
|
argparser.add_argument("--cond_dropout", type=float, default=0.04, help="Conditional drop out as decimal 0.0-1.0, see docs for more info (def: 0.04)")
|
|
argparser.add_argument("--data_root", type=str, default="input", help="folder where your training images are")
|
|
argparser.add_argument("--disable_amp", action="store_true", default=False, help="disables training of text encoder (def: False)")
|
|
argparser.add_argument("--disable_textenc_training", action="store_true", default=False, help="disables training of text encoder (def: False)")
|
|
argparser.add_argument("--disable_unet_training", action="store_true", default=False, help="disables training of unet (def: False) NOT RECOMMENDED")
|
|
argparser.add_argument("--disable_xformers", action="store_true", default=False, help="disable xformers, may reduce performance (def: False)")
|
|
argparser.add_argument("--flip_p", type=float, default=0.0, help="probability of flipping image horizontally (def: 0.0) use 0.0 to 1.0, ex 0.5, not good for specific faces!")
|
|
argparser.add_argument("--gpuid", type=int, default=0, help="id of gpu to use for training, (def: 0) (ex: 1 to use GPU_ID 1)")
|
|
argparser.add_argument("--gradient_checkpointing", action="store_true", default=False, help="enable gradient checkpointing to reduce VRAM use, may reduce performance (def: False)")
|
|
argparser.add_argument("--grad_accum", type=int, default=1, help="Gradient accumulation factor (def: 1), (ex, 2)")
|
|
argparser.add_argument("--logdir", type=str, default="logs", help="folder to save logs to (def: logs)")
|
|
argparser.add_argument("--log_step", type=int, default=25, help="How often to log training stats, def: 25, recommend default!")
|
|
argparser.add_argument("--lowvram", action="store_true", default=False, help="automatically overrides various args to support 12GB gpu")
|
|
argparser.add_argument("--lr", type=float, default=None, help="Learning rate, if using scheduler is maximum LR at top of curve")
|
|
argparser.add_argument("--lr_decay_steps", type=int, default=0, help="Steps to reach minimum LR, default: automatically set")
|
|
argparser.add_argument("--lr_scheduler", type=str, default="constant", help="LR scheduler, (default: constant)", choices=["constant", "linear", "cosine", "polynomial"])
|
|
argparser.add_argument("--lr_warmup_steps", type=int, default=None, help="Steps to reach max LR during warmup (def: 0.02 of lr_decay_steps), non-functional for constant")
|
|
argparser.add_argument("--max_epochs", type=int, default=300, help="Maximum number of epochs to train for")
|
|
argparser.add_argument("--notebook", action="store_true", default=False, help="disable keypresses and uses tqdm.notebook for jupyter notebook (def: False)")
|
|
argparser.add_argument("--optimizer_config", default="optimizer.json", help="Path to a JSON configuration file for the optimizer. Default is 'optimizer.json'")
|
|
argparser.add_argument("--project_name", type=str, default="myproj", help="Project name for logs and checkpoints, ex. 'tedbennett', 'superduperV1'")
|
|
argparser.add_argument("--resolution", type=int, default=512, help="resolution to train", choices=supported_resolutions)
|
|
argparser.add_argument("--resume_ckpt", type=str, required=not ('resume_ckpt' in args), default="sd_v1-5_vae.ckpt", help="The checkpoint to resume from, either a local .ckpt file, a converted Diffusers format folder, or a Huggingface.co repo id such as stabilityai/stable-diffusion-2-1 ")
|
|
argparser.add_argument("--run_name", type=str, required=False, default=None, help="Run name for wandb (child of project name), and comment for tensorboard, (def: None)")
|
|
argparser.add_argument("--sample_prompts", type=str, default="sample_prompts.txt", help="Text file with prompts to generate test samples from, or JSON file with sample generator settings (default: sample_prompts.txt)")
|
|
argparser.add_argument("--sample_steps", type=int, default=250, help="Number of steps between samples (def: 250)")
|
|
argparser.add_argument("--save_ckpt_dir", type=str, default=None, help="folder to save checkpoints to (def: root training folder)")
|
|
argparser.add_argument("--save_every_n_epochs", type=int, default=None, help="Save checkpoint every n epochs, def: 0 (disabled)")
|
|
argparser.add_argument("--save_ckpts_from_n_epochs", type=int, default=0, help="Only saves checkpoints starting an N epochs, def: 0 (disabled)")
|
|
argparser.add_argument("--save_full_precision", action="store_true", default=False, help="save ckpts at full FP32")
|
|
argparser.add_argument("--save_optimizer", action="store_true", default=False, help="saves optimizer state with ckpt, useful for resuming training later")
|
|
argparser.add_argument("--scale_lr", action="store_true", default=False, help="automatically scale up learning rate based on batch size and grad accumulation (def: False)")
|
|
argparser.add_argument("--seed", type=int, default=555, help="seed used for samples and shuffling, use -1 for random")
|
|
argparser.add_argument("--shuffle_tags", action="store_true", default=False, help="randomly shuffles CSV tags in captions, for booru datasets")
|
|
argparser.add_argument("--useadam8bit", action="store_true", default=False, help="deprecated, use --optimizer_config and optimizer.json instead")
|
|
argparser.add_argument("--wandb", action="store_true", default=False, help="enable wandb logging instead of tensorboard, requires env var WANDB_API_KEY")
|
|
argparser.add_argument("--validation_config", default=None, help="Path to a JSON configuration file for the validator. Default is no validation.")
|
|
argparser.add_argument("--write_schedule", action="store_true", default=False, help="write schedule of images and their batches to file (def: False)")
|
|
argparser.add_argument("--rated_dataset", action="store_true", default=False, help="enable rated image set training, to less often train on lower rated images through the epochs")
|
|
argparser.add_argument("--rated_dataset_target_dropout_percent", type=int, default=50, help="how many images (in percent) should be included in the last epoch (Default 50)")
|
|
argparser.add_argument("--zero_frequency_noise_ratio", type=float, default=0.02, help="adds zero frequency noise, for improving contrast (def: 0.0) use 0.0 to 0.15")
|
|
|
|
# load CLI args to overwrite existing config args
|
|
args = argparser.parse_args(args=argv, namespace=args)
|
|
print(f" Args:")
|
|
pprint.pprint(vars(args))
|
|
main(args)
|