EveryDream2trainer/data/data_loader.py

229 lines
9.9 KiB
Python

"""
Copyright [2022] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import bisect
import math
import os
import logging
import copy
import random
from data.image_train_item import ImageTrainItem
import data.aspects as aspects
import data.resolver as resolver
from colorama import Fore, Style
import PIL
PIL.Image.MAX_IMAGE_PIXELS = 715827880*4 # increase decompression bomb error limit to 4x default
class DataLoaderMultiAspect():
"""
Data loader for multi-aspect-ratio training and bucketing
data_root: root folder of training data
batch_size: number of images per batch
flip_p: probability of flipping image horizontally (i.e. 0-0.5)
"""
def __init__(self, data_root, seed=555, debug_level=0, batch_size=1, flip_p=0.0, resolution=512, log_folder=None):
self.data_root = data_root
self.debug_level = debug_level
self.flip_p = flip_p
self.log_folder = log_folder
self.seed = seed
self.batch_size = batch_size
self.has_scanned = False
self.aspects = aspects.get_aspect_buckets(resolution=resolution, square_only=False)
logging.info(f"* DLMA resolution {resolution}, buckets: {self.aspects}")
self.__prepare_train_data()
(self.rating_overall_sum, self.ratings_summed) = self.__sort_and_precalc_image_ratings()
def __pick_multiplied_set(self, randomizer):
"""
Deals with multiply.txt whole and fractional numbers
"""
#print(f"Picking multiplied set from {len(self.prepared_train_data)}")
data_copy = copy.deepcopy(self.prepared_train_data) # deep copy to avoid modifying original multiplier property
epoch_size = len(self.prepared_train_data)
picked_images = []
# add by whole number part first and decrement multiplier in copy
for iti in data_copy:
#print(f"check for whole number {iti.multiplier}: {iti.pathname}, remaining {iti.multiplier}")
while iti.multiplier >= 1.0:
picked_images.append(iti)
#print(f"Adding {iti.multiplier}: {iti.pathname}, remaining {iti.multiplier}, , datalen: {len(picked_images)}")
iti.multiplier -= 1.0
remaining = epoch_size - len(picked_images)
assert remaining >= 0, "Something went wrong with the multiplier calculation"
#print(f"Remaining to fill epoch after whole number adds: {remaining}")
#print(f"Remaining in data copy: {len(data_copy)}")
# add by renaming fractional numbers by random chance
while remaining > 0:
for iti in data_copy:
if randomizer.uniform(0.0, 1.0) < iti.multiplier:
#print(f"Adding {iti.multiplier}: {iti.pathname}, remaining {remaining}, datalen: {len(data_copy)}")
picked_images.append(iti)
remaining -= 1
data_copy.remove(iti)
if remaining <= 0:
break
del data_copy
return picked_images
def get_shuffled_image_buckets(self, dropout_fraction: float = 1.0):
"""
returns the current list of images including their captions in a randomized order,
sorted into buckets with same sized images
if dropout_fraction < 1.0, only a subset of the images will be returned
if dropout_fraction >= 1.0, repicks fractional multipliers based on folder/multiply.txt values swept at prescan
:param dropout_fraction: must be between 0.0 and 1.0.
:return: randomized list of (image, caption) pairs, sorted into same sized buckets
"""
self.seed += 1
randomizer = random.Random(self.seed)
if dropout_fraction < 1.0:
picked_images = self.__pick_random_subset(dropout_fraction, randomizer)
else:
picked_images = self.__pick_multiplied_set(randomizer)
randomizer.shuffle(picked_images)
buckets = {}
batch_size = self.batch_size
for image_caption_pair in picked_images:
image_caption_pair.runt_size = 0
target_wh = image_caption_pair.target_wh
if (target_wh[0],target_wh[1]) not in buckets:
buckets[(target_wh[0],target_wh[1])] = []
buckets[(target_wh[0],target_wh[1])].append(image_caption_pair)
if len(buckets) > 1:
for bucket in buckets:
truncate_count = len(buckets[bucket]) % batch_size
if truncate_count > 0:
runt_bucket = buckets[bucket][-truncate_count:]
for item in runt_bucket:
item.runt_size = truncate_count
while len(runt_bucket) < batch_size:
runt_bucket.append(random.choice(runt_bucket))
current_bucket_size = len(buckets[bucket])
buckets[bucket] = buckets[bucket][:current_bucket_size - truncate_count]
buckets[bucket].extend(runt_bucket)
# flatten the buckets
image_caption_pairs = []
for bucket in buckets:
image_caption_pairs.extend(buckets[bucket])
return image_caption_pairs
def __sort_and_precalc_image_ratings(self) -> tuple[float, list[float]]:
self.prepared_train_data = sorted(self.prepared_train_data, key=lambda img: img.caption.rating())
rating_overall_sum: float = 0.0
ratings_summed: list[float] = []
for image in self.prepared_train_data:
rating_overall_sum += image.caption.rating()
ratings_summed.append(rating_overall_sum)
return rating_overall_sum, ratings_summed
def __prepare_train_data(self, flip_p=0.0) -> list[ImageTrainItem]:
"""
Create ImageTrainItem objects with metadata for hydration later
"""
if not self.has_scanned:
self.has_scanned = True
logging.info(" Preloading images...")
items = resolver.resolve(self.data_root, self.aspects, flip_p=flip_p, seed=self.seed)
image_paths = set(map(lambda item: item.pathname, items))
print (f" * DLMA: {len(items)} images loaded from {len(image_paths)} files")
self.prepared_train_data = [item for item in items if item.error is None]
random.Random(self.seed).shuffle(self.prepared_train_data)
self.__report_errors(items)
def __report_errors(self, items: list[ImageTrainItem]):
for item in items:
if item.error is not None:
logging.error(f"{Fore.LIGHTRED_EX} *** Error opening {Fore.LIGHTYELLOW_EX}{item.pathname}{Fore.LIGHTRED_EX} to get metadata. File may be corrupt and will be skipped.{Style.RESET_ALL}")
logging.error(f" *** exception: {item.error}")
undersized_items = [item for item in items if item.is_undersized]
if len(undersized_items) > 0:
underized_log_path = os.path.join(self.log_folder, "undersized_images.txt")
logging.warning(f"{Fore.LIGHTRED_EX} ** Some images are smaller than the target size, consider using larger images{Style.RESET_ALL}")
logging.warning(f"{Fore.LIGHTRED_EX} ** Check {underized_log_path} for more information.{Style.RESET_ALL}")
with open(underized_log_path, "w") as undersized_images_file:
undersized_images_file.write(f" The following images are smaller than the target size, consider removing or sourcing a larger copy:")
for undersized_item in undersized_items:
message = f" *** {undersized_item.pathname} with size: {undersized_item.image_size} is smaller than target size: {undersized_item.target_wh}, consider using larger images"
undersized_images_file.write(message)
def __pick_random_subset(self, dropout_fraction: float, picker: random.Random) -> list[ImageTrainItem]:
"""
Picks a random subset of all images
- The size of the subset is limited by dropout_faction
- The chance of an image to be picked is influenced by its rating. Double that rating -> double the chance
:param dropout_fraction: must be between 0.0 and 1.0
:param picker: seeded random picker
:return: list of picked ImageTrainItem
"""
prepared_train_data = self.prepared_train_data.copy()
ratings_summed = self.ratings_summed.copy()
rating_overall_sum = self.rating_overall_sum
num_images = len(prepared_train_data)
num_images_to_pick = math.ceil(num_images * dropout_fraction)
num_images_to_pick = max(min(num_images_to_pick, num_images), 0)
# logging.info(f"Picking {num_images_to_pick} images out of the {num_images} in the dataset for drop_fraction {dropout_fraction}")
picked_images: list[ImageTrainItem] = []
while num_images_to_pick > len(picked_images):
# find random sample in dataset
point = picker.uniform(0.0, rating_overall_sum)
pos = min(bisect.bisect_left(ratings_summed, point), len(prepared_train_data) -1 )
# pick random sample
picked_image = prepared_train_data[pos]
picked_images.append(picked_image)
# kick picked item out of data set to not pick it again
rating_overall_sum = max(rating_overall_sum - picked_image.caption.rating(), 0.0)
ratings_summed.pop(pos)
prepared_train_data.pop(pos)
return picked_images