EveryDream2trainer/data/image_train_item.py

396 lines
15 KiB
Python

"""
Copyright [2022] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import bisect
import logging
import math
import os
import random
import typing
import yaml
import PIL
import PIL.Image as Image
import numpy as np
from torchvision import transforms
_RANDOM_TRIM = 0.04
DEFAULT_MAX_CAPTION_LENGTH = 2048
OptionalImageCaption = typing.Optional['ImageCaption']
class ImageCaption:
"""
Represents the various parts of an image caption
"""
def __init__(self, main_prompt: str, rating: float, tags: list[str], tag_weights: list[float], max_target_length: int, use_weights: bool):
"""
:param main_prompt: The part of the caption which should always be included
:param tags: list of tags to pick from to fill the caption
:param tag_weights: weights to indicate which tags are more desired and should be picked preferably
:param max_target_length: The desired maximum length of a generated caption
:param use_weights: if ture, weights are considered when shuffling tags
"""
self.__main_prompt = main_prompt
self.__rating = rating
self.__tags = tags
self.__tag_weights = tag_weights
self.__max_target_length = max_target_length
self.__use_weights = use_weights
if use_weights and len(tags) > len(tag_weights):
self.__tag_weights.extend([1.0] * (len(tags) - len(tag_weights)))
if use_weights and len(tag_weights) > len(tags):
self.__tag_weights = tag_weights[:len(tags)]
def rating(self) -> float:
return self.__rating
def get_shuffled_caption(self, seed: int) -> str:
"""
returns the caption a string with a random selection of the tags in random order
:param seed used to initialize the randomizer
:return: generated caption string
"""
if self.__tags:
max_target_tag_length = self.__max_target_length - len(self.__main_prompt)
if self.__use_weights:
tags_caption = self.__get_weighted_shuffled_tags(seed, self.__tags, self.__tag_weights, max_target_tag_length)
else:
tags_caption = self.__get_shuffled_tags(seed, self.__tags)
return self.__main_prompt + ", " + tags_caption
return self.__main_prompt
def get_caption(self) -> str:
if self.__tags:
return self.__main_prompt + ", " + ", ".join(self.__tags)
return self.__main_prompt
@staticmethod
def __get_weighted_shuffled_tags(seed: int, tags: list[str], weights: list[float], max_target_tag_length: int) -> str:
picker = random.Random(seed)
tags_copy = tags.copy()
weights_copy = weights.copy()
caption = ""
while len(tags_copy) != 0 and len(caption) < max_target_tag_length:
cum_weights = []
weight_sum = 0.0
for weight in weights_copy:
weight_sum += weight
cum_weights.append(weight_sum)
point = picker.uniform(0, weight_sum)
pos = bisect.bisect_left(cum_weights, point)
weights_copy.pop(pos)
tag = tags_copy.pop(pos)
if caption:
caption += ", "
caption += tag
return caption
@staticmethod
def __get_shuffled_tags(seed: int, tags: list[str]) -> str:
random.Random(seed).shuffle(tags)
return ", ".join(tags)
@staticmethod
def parse(string: str) -> 'ImageCaption':
"""
Parses a string to get the caption.
:param string: String to parse.
:return: `ImageCaption` object.
"""
split_caption = list(map(str.strip, string.split(",")))
main_prompt = split_caption[0]
tags = split_caption[1:]
tag_weights = [1.0] * len(tags)
return ImageCaption(main_prompt, 1.0, tags, tag_weights, DEFAULT_MAX_CAPTION_LENGTH, False)
@staticmethod
def from_file_name(file_path: str) -> 'ImageCaption':
"""
Parses the file name to get the caption.
:param file_path: Path to the image file.
:return: `ImageCaption` object.
"""
(file_name, _) = os.path.splitext(os.path.basename(file_path))
caption = file_name.split("_")[0]
return ImageCaption.parse(caption)
@staticmethod
def from_text_file(file_path: str, default_caption: OptionalImageCaption=None) -> OptionalImageCaption:
"""
Parses a text file to get the caption. Returns the default caption if
the file does not exist or is invalid.
:param file_path: Path to the text file.
:param default_caption: Optional `ImageCaption` to return if the file does not exist or is invalid.
:return: `ImageCaption` object or `None`.
"""
try:
with open(file_path, encoding='utf-8', mode='r') as caption_file:
caption_text = caption_file.read()
return ImageCaption.parse(caption_text)
except:
logging.error(f" *** Error reading {file_path} to get caption")
return default_caption
@staticmethod
def from_yaml_file(file_path: str, default_caption: OptionalImageCaption=None) -> OptionalImageCaption:
"""
Parses a yaml file to get the caption. Returns the default caption if
the file does not exist or is invalid.
:param file_path: path to the yaml file
:param default_caption: caption to return if the file does not exist or is invalid
:return: `ImageCaption` object or `None`.
"""
try:
with open(file_path, "r") as stream:
file_content = yaml.safe_load(stream)
main_prompt = file_content.get("main_prompt", "")
rating = file_content.get("rating", 1.0)
unparsed_tags = file_content.get("tags", [])
max_caption_length = file_content.get("max_caption_length", DEFAULT_MAX_CAPTION_LENGTH)
tags = []
tag_weights = []
last_weight = None
weights_differ = False
for unparsed_tag in unparsed_tags:
tag = unparsed_tag.get("tag", "").strip()
if len(tag) == 0:
continue
tags.append(tag)
tag_weight = unparsed_tag.get("weight", 1.0)
tag_weights.append(tag_weight)
if last_weight is not None and weights_differ is False:
weights_differ = last_weight != tag_weight
last_weight = tag_weight
return ImageCaption(main_prompt, rating, tags, tag_weights, max_caption_length, weights_differ)
except:
logging.error(f" *** Error reading {file_path} to get caption")
return default_caption
@staticmethod
def from_file(file_path: str, default_caption: OptionalImageCaption=None) -> OptionalImageCaption:
"""
Try to resolve a caption from a file path or return `default_caption`.
:string: The path to the file to parse.
:default_caption: Optional `ImageCaption` to return if the file does not exist or is invalid.
:return: `ImageCaption` object or `None`.
"""
if os.path.exists(file_path):
(file_path_without_ext, ext) = os.path.splitext(file_path)
match ext:
case ".yaml" | ".yml":
return ImageCaption.from_yaml_file(file_path, default_caption)
case ".txt" | ".caption":
return ImageCaption.from_text_file(file_path, default_caption)
case '.jpg'| '.jpeg'| '.png'| '.bmp'| '.webp'| '.jfif':
for ext in [".yaml", ".yml", ".txt", ".caption"]:
file_path = file_path_without_ext + ext
image_caption = ImageCaption.from_file(file_path)
if image_caption is not None:
return image_caption
return ImageCaption.from_file_name(file_path)
case _:
return default_caption
else:
return default_caption
@staticmethod
def resolve(string: str) -> 'ImageCaption':
"""
Try to resolve a caption from a string. If the string is a file path,
the caption will be read from the file, otherwise the string will be
parsed as a caption.
:string: The string to resolve.
:return: `ImageCaption` object.
"""
return ImageCaption.from_file(string, None) or ImageCaption.parse(string)
class ImageTrainItem:
"""
image: PIL.Image
identifier: caption,
target_aspect: (width, height),
pathname: path to image file
flip_p: probability of flipping image (0.0 to 1.0)
rating: the relative rating of the images. The rating is measured in comparison to the other images.
"""
def __init__(self, image: PIL.Image, caption: ImageCaption, aspects: list[float], pathname: str, flip_p=0.0, multiplier: float=1.0):
self.caption = caption
self.aspects = aspects
self.pathname = pathname
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.cropped_img = None
self.runt_size = 0
self.multiplier = multiplier
self.image_size = None
if image is None:
self.image = []
else:
self.image = image
self.image_size = image.size
self.target_size = None
self.is_undersized = False
self.error = None
self.__compute_target_width_height()
def hydrate(self, crop=False, save=False, crop_jitter=20):
"""
crop: hard center crop to 512x512
save: save the cropped image to disk, for manual inspection of resize/crop
crop_jitter: randomly shift cropp by N pixels when using multiple aspect ratios to improve training quality
"""
# print(self.pathname, self.image)
try:
# if not hasattr(self, 'image'):
self.image = PIL.Image.open(self.pathname).convert('RGB')
width, height = self.image.size
if crop:
cropped_img = self.__autocrop(self.image)
self.image = cropped_img.resize((512, 512), resample=PIL.Image.BICUBIC)
else:
width, height = self.image.size
jitter_amount = random.randint(0, crop_jitter)
if self.target_wh[0] == self.target_wh[1]:
if width > height:
left = random.randint(0, width - height)
self.image = self.image.crop((left, 0, height + left, height))
width = height
elif height > width:
top = random.randint(0, height - width)
self.image = self.image.crop((0, top, width, width + top))
height = width
elif width > self.target_wh[0]:
slice = min(int(self.target_wh[0] * _RANDOM_TRIM), width - self.target_wh[0])
slicew_ratio = random.random()
left = int(slice * slicew_ratio)
right = width - int(slice * (1 - slicew_ratio))
sliceh_ratio = random.random()
top = int(slice * sliceh_ratio)
bottom = height - int(slice * (1 - sliceh_ratio))
self.image = self.image.crop((left, top, right, bottom))
else:
image_aspect = width / height
target_aspect = self.target_wh[0] / self.target_wh[1]
if image_aspect > target_aspect:
new_width = int(height * target_aspect)
jitter_amount = max(min(jitter_amount, int(abs(width - new_width) / 2)), 0)
left = jitter_amount
right = left + new_width
self.image = self.image.crop((left, 0, right, height))
else:
new_height = int(width / target_aspect)
jitter_amount = max(min(jitter_amount, int(abs(height - new_height) / 2)), 0)
top = jitter_amount
bottom = top + new_height
self.image = self.image.crop((0, top, width, bottom))
self.image = self.image.resize(self.target_wh, resample=PIL.Image.BICUBIC)
self.image = self.flip(self.image)
except Exception as e:
logging.error(f"Fatal Error loading image: {self.pathname}:")
logging.error(e)
exit()
if type(self.image) is not np.ndarray:
if save:
base_name = os.path.basename(self.pathname)
if not os.path.exists("test/output"):
os.makedirs("test/output")
self.image.save(f"test/output/{base_name}")
self.image = np.array(self.image).astype(np.uint8)
# self.image = (self.image / 127.5 - 1.0).astype(np.float32)
# print(self.image.shape)
return self
def __compute_target_width_height(self):
self.target_wh = None
try:
with Image.open(self.pathname) as image:
width, height = image.size
image_aspect = width / height
target_wh = min(self.aspects, key=lambda aspects:abs(aspects[0]/aspects[1] - image_aspect))
self.is_undersized = width * height < target_wh[0] * target_wh[1]
self.target_wh = target_wh
except Exception as e:
self.error = e
@staticmethod
def __autocrop(image: PIL.Image, q=.404):
"""
crops image to a random square inside small axis using a truncated gaussian distribution across the long axis
"""
x, y = image.size
if x != y:
if (x > y):
rand_x = x - y
sigma = max(rand_x * q, 1)
else:
rand_y = y - x
sigma = max(rand_y * q, 1)
if (x > y):
x_crop_gauss = abs(random.gauss(0, sigma))
x_crop = min(x_crop_gauss, (x - y) / 2)
x_crop = math.trunc(x_crop)
y_crop = 0
else:
y_crop_gauss = abs(random.gauss(0, sigma))
x_crop = 0
y_crop = min(y_crop_gauss, (y - x) / 2)
y_crop = math.trunc(y_crop)
min_xy = min(x, y)
image = image.crop((x_crop, y_crop, x_crop + min_xy, y_crop + min_xy))
return image