177 lines
7.0 KiB
Python
177 lines
7.0 KiB
Python
"""
|
|
Copyright [2022] Victor C Hall
|
|
|
|
Licensed under the GNU Affero General Public License;
|
|
You may not use this code except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
https://www.gnu.org/licenses/agpl-3.0.en.html
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
import bisect
|
|
import logging
|
|
import os.path
|
|
from collections import defaultdict
|
|
import math
|
|
import copy
|
|
|
|
import random
|
|
from data.image_train_item import ImageTrainItem
|
|
import PIL.Image
|
|
|
|
PIL.Image.MAX_IMAGE_PIXELS = 715827880*4 # increase decompression bomb error limit to 4x default
|
|
|
|
class DataLoaderMultiAspect():
|
|
"""
|
|
Data loader for multi-aspect-ratio training and bucketing
|
|
|
|
image_train_items: list of `ImageTrainItem` objects
|
|
seed: random seed
|
|
batch_size: number of images per batch
|
|
"""
|
|
def __init__(self, image_train_items: list[ImageTrainItem], seed=555, batch_size=1):
|
|
self.seed = seed
|
|
self.batch_size = batch_size
|
|
self.prepared_train_data = image_train_items
|
|
random.Random(self.seed).shuffle(self.prepared_train_data)
|
|
self.prepared_train_data = sorted(self.prepared_train_data, key=lambda img: img.caption.rating())
|
|
self.expected_epoch_size = math.floor(sum([i.multiplier for i in self.prepared_train_data]))
|
|
if self.expected_epoch_size != len(self.prepared_train_data):
|
|
logging.info(f" * DLMA initialized with {len(image_train_items)} source images. After applying multipliers, each epoch will train on at least {self.expected_epoch_size} images.")
|
|
else:
|
|
logging.info(f" * DLMA initialized with {len(image_train_items)} images.")
|
|
|
|
self.rating_overall_sum: float = 0.0
|
|
self.ratings_summed: list[float] = []
|
|
self.__update_rating_sums()
|
|
|
|
|
|
def __pick_multiplied_set(self, randomizer: random.Random):
|
|
"""
|
|
Deals with multiply.txt whole and fractional numbers
|
|
"""
|
|
picked_images = []
|
|
data_copy = copy.deepcopy(self.prepared_train_data) # deep copy to avoid modifying original multiplier property
|
|
for iti in data_copy:
|
|
while iti.multiplier >= 1:
|
|
picked_images.append(iti)
|
|
iti.multiplier -= 1
|
|
|
|
remaining = self.expected_epoch_size - len(picked_images)
|
|
|
|
assert remaining >= 0, "Something went wrong with the multiplier calculation"
|
|
|
|
# resolve fractional parts, ensure each is only added max once
|
|
while remaining > 0:
|
|
for iti in data_copy:
|
|
if randomizer.random() < iti.multiplier:
|
|
picked_images.append(iti)
|
|
iti.multiplier = 0
|
|
remaining -= 1
|
|
if remaining <= 0:
|
|
break
|
|
|
|
return picked_images
|
|
|
|
def get_shuffled_image_buckets(self, dropout_fraction: float = 1.0) -> list[ImageTrainItem]:
|
|
"""
|
|
Returns the current list of `ImageTrainItem` in randomized order,
|
|
sorted into buckets with same sized images.
|
|
|
|
If dropout_fraction < 1.0, only a subset of the images will be returned.
|
|
|
|
If dropout_fraction >= 1.0, repicks fractional multipliers based on folder/multiply.txt values swept at prescan.
|
|
|
|
:param dropout_fraction: must be between 0.0 and 1.0.
|
|
:return: Randomized list of `ImageTrainItem` objects
|
|
"""
|
|
|
|
self.seed += 1
|
|
randomizer = random.Random(self.seed)
|
|
|
|
if dropout_fraction < 1.0:
|
|
picked_images = self.__pick_random_subset(dropout_fraction, randomizer)
|
|
else:
|
|
picked_images = self.__pick_multiplied_set(randomizer)
|
|
|
|
randomizer.shuffle(picked_images)
|
|
|
|
buckets = {}
|
|
batch_size = self.batch_size
|
|
for image_caption_pair in picked_images:
|
|
image_caption_pair.runt_size = 0
|
|
target_wh = image_caption_pair.target_wh
|
|
|
|
if (target_wh[0],target_wh[1]) not in buckets:
|
|
buckets[(target_wh[0],target_wh[1])] = []
|
|
buckets[(target_wh[0],target_wh[1])].append(image_caption_pair)
|
|
|
|
for bucket in buckets:
|
|
truncate_count = len(buckets[bucket]) % batch_size
|
|
if truncate_count > 0:
|
|
runt_bucket = buckets[bucket][-truncate_count:]
|
|
for item in runt_bucket:
|
|
item.runt_size = truncate_count
|
|
while len(runt_bucket) < batch_size:
|
|
runt_bucket.append(random.choice(runt_bucket))
|
|
|
|
current_bucket_size = len(buckets[bucket])
|
|
|
|
buckets[bucket] = buckets[bucket][:current_bucket_size - truncate_count]
|
|
buckets[bucket].extend(runt_bucket)
|
|
|
|
# flatten the buckets
|
|
items: list[ImageTrainItem] = []
|
|
for bucket in buckets:
|
|
items.extend(buckets[bucket])
|
|
|
|
return items
|
|
|
|
def __pick_random_subset(self, dropout_fraction: float, picker: random.Random) -> list[ImageTrainItem]:
|
|
"""
|
|
Picks a random subset of all images
|
|
- The size of the subset is limited by dropout_faction
|
|
- The chance of an image to be picked is influenced by its rating. Double that rating -> double the chance
|
|
:param dropout_fraction: must be between 0.0 and 1.0
|
|
:param picker: seeded random picker
|
|
:return: list of picked ImageTrainItem
|
|
"""
|
|
|
|
prepared_train_data = self.prepared_train_data.copy()
|
|
ratings_summed = self.ratings_summed.copy()
|
|
rating_overall_sum = self.rating_overall_sum
|
|
|
|
num_images = len(prepared_train_data)
|
|
num_images_to_pick = math.ceil(num_images * dropout_fraction)
|
|
num_images_to_pick = max(min(num_images_to_pick, num_images), 0)
|
|
|
|
# logging.info(f"Picking {num_images_to_pick} images out of the {num_images} in the dataset for drop_fraction {dropout_fraction}")
|
|
|
|
picked_images: list[ImageTrainItem] = []
|
|
while num_images_to_pick > len(picked_images):
|
|
# find random sample in dataset
|
|
point = picker.uniform(0.0, rating_overall_sum)
|
|
pos = min(bisect.bisect_left(ratings_summed, point), len(prepared_train_data) -1 )
|
|
|
|
# pick random sample
|
|
picked_image = prepared_train_data[pos]
|
|
picked_images.append(picked_image)
|
|
|
|
# kick picked item out of data set to not pick it again
|
|
rating_overall_sum = max(rating_overall_sum - picked_image.caption.rating(), 0.0)
|
|
ratings_summed.pop(pos)
|
|
prepared_train_data.pop(pos)
|
|
|
|
return picked_images
|
|
|
|
def __update_rating_sums(self):
|
|
self.rating_overall_sum: float = 0.0
|
|
self.ratings_summed: list[float] = []
|
|
for item in self.prepared_train_data:
|
|
self.rating_overall_sum += item.caption.rating()
|
|
self.ratings_summed.append(self.rating_overall_sum) |