EveryDream2trainer/data/data_loader.py

308 lines
12 KiB
Python

"""
Copyright [2022] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import bisect
import math
import os
import logging
import yaml
from PIL import Image
import random
from data.image_train_item import ImageTrainItem, ImageCaption
import data.aspects as aspects
from colorama import Fore, Style
import zipfile
import tqdm
import PIL
PIL.Image.MAX_IMAGE_PIXELS = 715827880*4 # increase decompression bomb error limit to 4x default
DEFAULT_MAX_CAPTION_LENGTH = 2048
class DataLoaderMultiAspect():
"""
Data loader for multi-aspect-ratio training and bucketing
data_root: root folder of training data
batch_size: number of images per batch
flip_p: probability of flipping image horizontally (i.e. 0-0.5)
"""
def __init__(self, data_root, seed=555, debug_level=0, batch_size=1, flip_p=0.0, resolution=512, log_folder=None):
self.image_paths = []
self.debug_level = debug_level
self.flip_p = flip_p
self.log_folder = log_folder
self.seed = seed
self.batch_size = batch_size
self.aspects = aspects.get_aspect_buckets(resolution=resolution, square_only=False)
logging.info(f"* DLMA resolution {resolution}, buckets: {self.aspects}")
logging.info(" Preloading images...")
self.unzip_all(data_root)
self.__recurse_data_root(self=self, recurse_root=data_root)
random.Random(seed).shuffle(self.image_paths)
self.prepared_train_data = self.__prescan_images(self.image_paths, flip_p)
(self.rating_overall_sum, self.ratings_summed) = self.__sort_and_precalc_image_ratings()
def get_shuffled_image_buckets(self, dropout_fraction: float = 1.0):
"""
returns the current list of images including their captions in a randomized order,
sorted into buckets with same sized images
if dropout_fraction < 1.0, only a subset of the images will be returned
:param dropout_fraction: must be between 0.0 and 1.0.
:return: randomized list of (image, caption) pairs, sorted into same sized buckets
"""
"""
Put images into buckets based on aspect ratio with batch_size*n images per bucket, discards remainder
"""
# TODO: this is not terribly efficient but at least linear time
self.seed += 1
randomizer = random.Random(self.seed)
if dropout_fraction < 1.0:
picked_images = self.__pick_random_subset(dropout_fraction, randomizer)
else:
picked_images = self.prepared_train_data
randomizer.shuffle(picked_images)
buckets = {}
batch_size = self.batch_size
for image_caption_pair in picked_images:
image_caption_pair.runt_size = 0
target_wh = image_caption_pair.target_wh
if (target_wh[0],target_wh[1]) not in buckets:
buckets[(target_wh[0],target_wh[1])] = []
buckets[(target_wh[0],target_wh[1])].append(image_caption_pair)
if len(buckets) > 1:
for bucket in buckets:
truncate_count = len(buckets[bucket]) % batch_size
if truncate_count > 0:
runt_bucket = buckets[bucket][-truncate_count:]
for item in runt_bucket:
item.runt_size = truncate_count
while len(runt_bucket) < batch_size:
runt_bucket.append(random.choice(runt_bucket))
current_bucket_size = len(buckets[bucket])
buckets[bucket] = buckets[bucket][:current_bucket_size - truncate_count]
buckets[bucket].extend(runt_bucket)
# flatten the buckets
image_caption_pairs = []
for bucket in buckets:
image_caption_pairs.extend(buckets[bucket])
return image_caption_pairs
@staticmethod
def unzip_all(path):
try:
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.zip'):
logging.info(f"Unzipping {file}")
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(path)
except Exception as e:
logging.error(f"Error unzipping files {e}")
def __sort_and_precalc_image_ratings(self) -> tuple[float, list[float]]:
self.prepared_train_data = sorted(self.prepared_train_data, key=lambda img: img.caption.rating())
rating_overall_sum: float = 0.0
ratings_summed: list[float] = []
for image in self.prepared_train_data:
rating_overall_sum += image.caption.rating()
ratings_summed.append(rating_overall_sum)
return rating_overall_sum, ratings_summed
@staticmethod
def __read_caption_from_file(file_path, fallback_caption: ImageCaption) -> ImageCaption:
try:
with open(file_path, encoding='utf-8', mode='r') as caption_file:
caption_text = caption_file.read()
caption = DataLoaderMultiAspect.__split_caption_into_tags(caption_text)
except:
logging.error(f" *** Error reading {file_path} to get caption, falling back to filename")
caption = fallback_caption
pass
return caption
@staticmethod
def __read_caption_from_yaml(file_path: str, fallback_caption: ImageCaption) -> ImageCaption:
with open(file_path, "r") as stream:
try:
file_content = yaml.safe_load(stream)
main_prompt = file_content.get("main_prompt", "")
rating = file_content.get("rating", 1.0)
unparsed_tags = file_content.get("tags", [])
max_caption_length = file_content.get("max_caption_length", DEFAULT_MAX_CAPTION_LENGTH)
tags = []
tag_weights = []
last_weight = None
weights_differ = False
for unparsed_tag in unparsed_tags:
tag = unparsed_tag.get("tag", "").strip()
if len(tag) == 0:
continue
tags.append(tag)
tag_weight = unparsed_tag.get("weight", 1.0)
tag_weights.append(tag_weight)
if last_weight is not None and weights_differ is False:
weights_differ = last_weight != tag_weight
last_weight = tag_weight
return ImageCaption(main_prompt, rating, tags, tag_weights, max_caption_length, weights_differ)
except:
logging.error(f" *** Error reading {file_path} to get caption, falling back to filename")
return fallback_caption
@staticmethod
def __split_caption_into_tags(caption_string: str) -> ImageCaption:
"""
Splits a string by "," into the main prompt and additional tags with equal weights
"""
split_caption = caption_string.split(",")
main_prompt = split_caption.pop(0).strip()
tags = []
for tag in split_caption:
tags.append(tag.strip())
return ImageCaption(main_prompt, 1.0, tags, [1.0] * len(tags), DEFAULT_MAX_CAPTION_LENGTH, False)
def __prescan_images(self, image_paths: list, flip_p=0.0) -> list[ImageTrainItem]:
"""
Create ImageTrainItem objects with metadata for hydration later
"""
decorated_image_train_items = []
for pathname in tqdm.tqdm(image_paths):
caption_from_filename = os.path.splitext(os.path.basename(pathname))[0].split("_")[0]
caption = DataLoaderMultiAspect.__split_caption_into_tags(caption_from_filename)
file_path_without_ext = os.path.splitext(pathname)[0]
yaml_file_path = file_path_without_ext + ".yaml"
txt_file_path = file_path_without_ext + ".txt"
caption_file_path = file_path_without_ext + ".caption"
if os.path.exists(yaml_file_path):
caption = self.__read_caption_from_yaml(yaml_file_path, caption)
elif os.path.exists(txt_file_path):
caption = self.__read_caption_from_file(txt_file_path, caption)
elif os.path.exists(caption_file_path):
caption = self.__read_caption_from_file(caption_file_path, caption)
try:
image = Image.open(pathname)
width, height = image.size
image_aspect = width / height
target_wh = min(self.aspects, key=lambda aspects:abs(aspects[0]/aspects[1] - image_aspect))
image_train_item = ImageTrainItem(image=None, caption=caption, target_wh=target_wh, pathname=pathname, flip_p=flip_p)
decorated_image_train_items.append(image_train_item)
except Exception as e:
logging.error(f"{Fore.LIGHTRED_EX} *** Error opening {Fore.LIGHTYELLOW_EX}{pathname}{Fore.LIGHTRED_EX} to get metadata. File may be corrupt and will be skipped.{Style.RESET_ALL}")
logging.error(f" *** exception: {e}")
pass
return decorated_image_train_items
def __pick_random_subset(self, dropout_fraction: float, picker: random.Random) -> list[ImageTrainItem]:
"""
Picks a random subset of all images
- The size of the subset is limited by dropout_faction
- The chance of an image to be picked is influenced by its rating. Double that rating -> double the chance
:param dropout_fraction: must be between 0.0 and 1.0
:param picker: seeded random picker
:return: list of picked ImageTrainItem
"""
prepared_train_data = self.prepared_train_data.copy()
ratings_summed = self.ratings_summed.copy()
rating_overall_sum = self.rating_overall_sum
num_images = len(prepared_train_data)
num_images_to_pick = math.ceil(num_images * dropout_fraction)
num_images_to_pick = max(min(num_images_to_pick, num_images), 0)
# logging.info(f"Picking {num_images_to_pick} images out of the {num_images} in the dataset for drop_fraction {dropout_fraction}")
picked_images: list[ImageTrainItem] = []
while num_images_to_pick > len(picked_images):
# find random sample in dataset
point = picker.uniform(0.0, rating_overall_sum)
pos = min(bisect.bisect_left(ratings_summed, point), len(prepared_train_data) -1 )
# pick random sample
picked_image = prepared_train_data[pos]
picked_images.append(picked_image)
# kick picked item out of data set to not pick it again
rating_overall_sum = max(rating_overall_sum - picked_image.caption.rating(), 0.0)
ratings_summed.pop(pos)
prepared_train_data.pop(pos)
return picked_images
@staticmethod
def __recurse_data_root(self, recurse_root):
multiply = 1
multiply_path = os.path.join(recurse_root, "multiply.txt")
if os.path.exists(multiply_path):
try:
with open(multiply_path, encoding='utf-8', mode='r') as f:
multiply = int(float(f.read().strip()))
logging.info(f" * DLMA multiply.txt in {recurse_root} set to {multiply}")
except:
logging.error(f" *** Error reading multiply.txt in {recurse_root}, defaulting to 1")
pass
for f in os.listdir(recurse_root):
current = os.path.join(recurse_root, f)
if os.path.isfile(current):
ext = os.path.splitext(f)[1].lower()
if ext in ['.jpg', '.jpeg', '.png', '.bmp', '.webp', '.jfif']:
# add image multiplyrepeats number of times
for _ in range(multiply):
self.image_paths.append(current)
sub_dirs = []
for d in os.listdir(recurse_root):
current = os.path.join(recurse_root, d)
if os.path.isdir(current):
sub_dirs.append(current)
for dir in sub_dirs:
self.__recurse_data_root(self=self, recurse_root=dir)