MicroAPRS/bertos/kern/proc_test.c

407 lines
10 KiB
C
Raw Normal View History

2014-04-03 14:21:37 -06:00
/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2009 Develer S.r.l. (http://www.develer.com/)
* -->
*
*
* \brief Test kernel preemption.
*
* This testcase spawns TASKS parallel threads that runs for TIME seconds. They
* continuously spin updating a global counter (one counter for each thread).
*
* At exit each thread checks if the others have been che chance to update
* their own counter. If not, it means the preemption didn't occur and the
* testcase returns an error message.
*
* Otherwise, if all the threads have been able to update their own counter it
* means preemption successfully occurs, since there is no active sleep inside
* each thread's implementation.
*
* \author Andrea Righi <arighi@develer.com>
*
* $test$: cp bertos/cfg/cfg_proc.h $cfgdir/
* $test$: echo "#undef CONFIG_KERN" >> $cfgdir/cfg_proc.h
* $test$: echo "#define CONFIG_KERN 1" >> $cfgdir/cfg_proc.h
* $test$: echo "#undef CONFIG_KERN_PRI" >> $cfgdir/cfg_proc.h
* $test$: echo "#define CONFIG_KERN_PRI 1" >> $cfgdir/cfg_proc.h
* $test$: echo "#undef CONFIG_KERN_PREEMPT" >> $cfgdir/cfg_proc.h
* $test$: echo "#define CONFIG_KERN_PREEMPT 1" >> $cfgdir/cfg_proc.h
* $test$: echo "#undef CONFIG_KERN_HEAP" >> $cfgdir/cfg_proc.h
* $test$: echo "#define CONFIG_KERN_HEAP 1" >> $cfgdir/cfg_proc.h
* $test$: echo "#undef CONFIG_KERN_HEAP_SIZE" >> $cfgdir/cfg_proc.h
* $test$: echo "#define CONFIG_KERN_HEAP_SIZE 2097152L" >> $cfgdir/cfg_proc.h
* $test$: cp bertos/cfg/cfg_monitor.h $cfgdir/
* $test$: sed -i "s/CONFIG_KERN_MONITOR 0/CONFIG_KERN_MONITOR 1/" $cfgdir/cfg_monitor.h
* $test$: cp bertos/cfg/cfg_signal.h $cfgdir/
* $test$: echo "#undef CONFIG_KERN_SIGNALS" >> $cfgdir/cfg_signal.h
* $test$: echo "#define CONFIG_KERN_SIGNALS 1" >> $cfgdir/cfg_signal.h
*
*/
#include <stdio.h> // sprintf
#include <string.h> // memset
#include <kern/proc.h>
#include <kern/irq.h>
#include <kern/monitor.h>
#include <drv/timer.h>
#include <cfg/test.h>
#include <cfg/cfg_proc.h>
enum
{
TEST_OK = 1,
TEST_FAIL = 2,
};
/* Number of tasks to spawn */
#define TASKS 8
static char name[TASKS][32];
static unsigned int done[TASKS];
static cpu_atomic_t barrier[TASKS];
static cpu_atomic_t main_barrier;
/* Base time delay for processes using timer_delay() */
#define DELAY 5
// Define process stacks for test.
#define WORKER_STACK_SIZE KERN_MINSTACKSIZE * 3
#if CONFIG_KERN_HEAP
#define WORKER_STACK(id) NULL
#else /* !CONFIG_KERN_HEAP */
static cpu_stack_t worker_stack[TASKS][(WORKER_STACK_SIZE +
sizeof(cpu_stack_t) - 1) / sizeof(cpu_stack_t)];
#define WORKER_STACK(id) (&worker_stack[id][0])
#endif /* CONFIG_KERN_HEAP */
static int prime_numbers[] =
{
1, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53,
};
STATIC_ASSERT(TASKS <= countof(prime_numbers));
#if CONFIG_KERN_PREEMPT
/* Time to run each preemptible thread (in seconds) */
#define TIME 10
static unsigned long preempt_counter[TASKS];
static unsigned int preempt_done[TASKS];
#endif
static void cleanup(void)
{
#if CONFIG_KERN_PREEMPT
// Clear shared data (this is needed when this testcase is embedded in
// the demo application).
memset(preempt_counter, 0, sizeof(preempt_counter));
memset(preempt_done, 0, sizeof(preempt_done));
#endif /* CONFIG_KERN_PREEMPT */
memset(done, 0, sizeof(done));
memset(barrier, 0, sizeof(barrier));
main_barrier = 0;
}
static void worker(void)
{
ssize_t pid = (ssize_t)proc_currentUserData();
long tot = prime_numbers[pid - 1];
unsigned int my_count = 0;
int i;
barrier[pid - 1] = 1;
/* Synchronize on the main barrier */
while (!main_barrier)
proc_yield();
for (i = 0; i < tot; i++)
{
my_count++;
PROC_ATOMIC(kprintf("> %s[%zd] running\n", __func__, pid));
timer_delay(tot * DELAY);
}
done[pid - 1] = 1;
PROC_ATOMIC(kprintf("> %s[%zd] completed\n", __func__, pid));
}
static int worker_test(void)
{
ssize_t i;
// Init the test processes
cleanup();
kputs("Run Proc test..\n");
for (i = 0; i < TASKS; i++)
{
name[i][0] = '\0';
snprintf(&name[i][0], sizeof(name[i]), "worker_%zd", i + 1);
name[i][sizeof(name[i]) - 1] = '\0';
proc_new_with_name(name[i], worker, (iptr_t)(i + 1),
WORKER_STACK_SIZE, WORKER_STACK(i));
}
/* Synchronize on start */
while (1)
{
for (i = 0; i < TASKS; i++)
if (!barrier[i])
break;
if (i == TASKS)
break;
proc_yield();
}
main_barrier = 1;
MEMORY_BARRIER;
kputs("> Main: Processes started\n");
while (1)
{
for (i = 0; i < TASKS; i++)
{
if (!done[i])
break;
}
if (i == TASKS)
break;
monitor_report();
timer_delay(93);
}
kputs("> Main: process test finished..ok!\n");
return 0;
}
#if CONFIG_KERN_PREEMPT
static void preempt_worker(void)
{
ssize_t pid = (ssize_t)proc_currentUserData();
unsigned long *my_count = &preempt_counter[pid - 1];
ticks_t start, stop;
int i;
barrier[pid - 1] = 1;
/* Synchronize on the main barrier */
while (!main_barrier)
proc_yield();
PROC_ATOMIC(kprintf("> %s[%zd] running\n", __func__, pid));
start = timer_clock();
stop = ms_to_ticks(TIME * 1000);
while (timer_clock() - start < stop)
{
IRQ_ASSERT_ENABLED();
(*my_count)++;
/* be sure to wrap to a value different than 0 */
if (UNLIKELY(*my_count == (unsigned int)~0))
*my_count = 1;
}
PROC_ATOMIC(kprintf("> %s[%zd] completed: (counter = %lu)\n",
__func__, pid, *my_count));
for (i = 0; i < TASKS; i++)
if (!preempt_counter[i])
{
preempt_done[pid - 1] = TEST_FAIL;
return;
}
preempt_done[pid - 1] = TEST_OK;
}
static int preempt_worker_test(void)
{
unsigned long score = 0;
ssize_t i;
// Init the test processes
cleanup();
kputs("Run Preemption test..\n");
for (i = 0; i < TASKS; i++)
{
name[i][0] = '\0';
snprintf(&name[i][0], sizeof(name[i]),
"preempt_worker_%zd", i + 1);
name[i][sizeof(name[i]) - 1] = '\0';
proc_new_with_name(name[i], preempt_worker, (iptr_t)(i + 1),
WORKER_STACK_SIZE, WORKER_STACK(i));
}
kputs("> Main: Processes created\n");
/* Synchronize on start */
while (1)
{
for (i = 0; i < TASKS; i++)
if (!barrier[i])
break;
if (i == TASKS)
break;
proc_yield();
}
/* Now all threads have been created, start them all */
main_barrier = 1;
MEMORY_BARRIER;
kputs("> Main: Processes started\n");
while (1)
{
for (i = 0; i < TASKS; i++)
{
if (!preempt_done[i])
break;
else if (preempt_done[i] == TEST_FAIL)
{
kputs("> Main: process test finished..fail!\n");
return -1;
}
}
if (i == TASKS)
break;
monitor_report();
timer_delay(1000);
}
for (i = 0; i < TASKS; i++)
score += preempt_counter[i];
kputs("> Main: process test finished..ok!\n");
kprintf("> Score: %lu\n", score);
return 0;
}
#endif /* CONFIG_KERN_PREEMPT */
#if CONFIG_KERN_SIGNALS & CONFIG_KERN_PRI
// Define params to test priority
#define PROC_PRI_TEST(num) static void proc_pri_test##num(void) \
{ \
struct Process *main_proc = (struct Process *) proc_currentUserData(); \
kputs("> Process: " #num "\n"); \
sig_send(main_proc, SIG_USER##num); \
}
// Default priority is 0
#define PROC_PRI_TEST_INIT(num, proc) \
do { \
struct Process *p = proc_new(proc_pri_test##num, (proc), \
WORKER_STACK_SIZE, \
WORKER_STACK(num)); \
proc_setPri(p, num + 1); \
} while (0)
PROC_PRI_TEST(0)
PROC_PRI_TEST(1)
PROC_PRI_TEST(2)
static int prio_worker_test(void)
{
struct Process *curr = proc_current();
int orig_pri = curr->link.pri;
int ret = 0;
// test process priority
// main process must have the higher priority to check signals received
proc_setPri(proc_current(), 10);
kputs("Run Priority test..\n");
// the order in which the processes are created is important!
PROC_PRI_TEST_INIT(0, curr);
PROC_PRI_TEST_INIT(1, curr);
PROC_PRI_TEST_INIT(2, curr);
// signals must be: USER2, 1, 0 in order
sigmask_t signals = sig_wait(SIG_USER0 | SIG_USER1 | SIG_USER2);
if (!(signals & SIG_USER2))
{
ret = -1;
goto out;
}
signals = sig_wait(SIG_USER0 | SIG_USER1 | SIG_USER2);
if (!(signals & SIG_USER1))
{
ret = -1;
goto out;
}
signals = sig_wait(SIG_USER0 | SIG_USER1 | SIG_USER2);
if (!(signals & SIG_USER0))
{
ret = -1;
goto out;
}
// All processes must have quit by now, but just in case...
signals = sig_waitTimeout(SIG_USER0 | SIG_USER1 | SIG_USER2, 200);
if (signals & (SIG_USER0 | SIG_USER1 | SIG_USER2))
{
ret = -1;
goto out;
}
if (signals & SIG_TIMEOUT)
{
kputs("Priority test successfull.\n");
}
out:
proc_setPri(proc_current(), orig_pri);
if (ret != 0)
kputs("Priority test failed.\n");
return ret;
}
#endif /* CONFIG_KERN_SIGNALS & CONFIG_KERN_PRI */
/**
* Process scheduling test
*/
int proc_testRun(void)
{
/* Start tests */
worker_test();
#if CONFIG_KERN_PREEMPT
preempt_worker_test();
#endif /* CONFIG_KERN_PREEMPT */
#if CONFIG_KERN_SIGNALS & CONFIG_KERN_PRI
prio_worker_test();
#endif /* CONFIG_KERN_SIGNALS & CONFIG_KERN_PRI */
return 0;
}
int proc_testSetup(void)
{
kdbg_init();
kprintf("Init Timer..");
timer_init();
kprintf("Done.\n");
kprintf("Init Process..");
proc_init();
kprintf("Done.\n");
return 0;
}
int proc_testTearDown(void)
{
kputs("TearDown Process test.\n");
return 0;
}
TEST_MAIN(proc);